2015, 2015(special): 10-18. doi: 10.3934/proc.2015.0010

Existence and multiplicity of stationary solutions for a Cahn--Hilliard-type equation in $\mathbb{R}^N$

1. 

Universidad Carlos III de Madrid, Av. Universidad 30, 28911-Leganés, Spain

Received  September 2014 Revised  January 2015 Published  November 2015

Solutions of the stationary semilinear Cahn--Hilliard-type equation $$ -\Delta^2 u - u -\Delta(|u|^{p-1}u)=0 \quad \mbox{in}     \mathbb{R}^N, \quad \mbox{with} \quad p>1, $$ which are exponentially decaying at infinity, are studied. Using the Mounting Pass Theorem allows us the determination of two different solutions. On the other hand, the application of Lusternik--Schnirel'man (L--S) Category Theory shows the existence of, at least, a countable family of solutions.
Citation: Pablo Álvarez-Caudevilla. Existence and multiplicity of stationary solutions for a Cahn--Hilliard-type equation in $\mathbb{R}^N$. Conference Publications, 2015, 2015 (special) : 10-18. doi: 10.3934/proc.2015.0010
References:
[1]

P. Álvarez-Caudevilla, J.D. Evans and V.A. Galaktionov, Countable families of solutions of a limit stationary semilinear fourth-order Cahn-Hilliard-type equation I., Mountain Pass Theorem and Lusternik-Schnirel'man patterns in $\mathbbR^N$, ().   Google Scholar

[2]

P. Álvarez-Caudevilla and V.A. Galaktionov, Steady states, global existence and blow-up for fourth-order semilinear parabolic equations of Cahn-Hilliard type,, Advances Nonl. Stud., 12 (2012), 315.   Google Scholar

[3]

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.   Google Scholar

[4]

J.D. Evans, V.A. Galaktionov and J.F. Williams, Blow-up and global asymptotics of the limit unstable Cahn-Hilliard equation, SIAM, J. Math. Anal., 38 (2006), 64.   Google Scholar

[5]

V.A. Galaktionov, E. Mitidieri and S.I. Pohozaev, Variational approach to complicated similarity solutions of higher-order nonlinear PDEs. II,, Nonl. Anal.: RWA, 12 (2011), 2435.   Google Scholar

[6]

G.A. Klassen and E. Mitidieri, Standing wave solutions for a system derived from the FitzHugh-Nagumo equations for nerve conduction, SIAM, J. Math. Anal., 17 (1986), 74.   Google Scholar

[7]

A. Novick-Cohen, The Cahn-Hilliard equation: mathematical and modeling perspectives,, Adv. Math. Sci. Appl., 8 (1998), 965.   Google Scholar

[8]

L.A. Peletier and W.C. Troy, Spatial Patterns., Higher Order Models in Physics and Mechanics, (2001).   Google Scholar

show all references

References:
[1]

P. Álvarez-Caudevilla, J.D. Evans and V.A. Galaktionov, Countable families of solutions of a limit stationary semilinear fourth-order Cahn-Hilliard-type equation I., Mountain Pass Theorem and Lusternik-Schnirel'man patterns in $\mathbbR^N$, ().   Google Scholar

[2]

P. Álvarez-Caudevilla and V.A. Galaktionov, Steady states, global existence and blow-up for fourth-order semilinear parabolic equations of Cahn-Hilliard type,, Advances Nonl. Stud., 12 (2012), 315.   Google Scholar

[3]

A. Ambrosetti and P.H. Rabinowitz, Dual variational methods in critical point theory and applications,, J. Funct. Anal., 14 (1973), 349.   Google Scholar

[4]

J.D. Evans, V.A. Galaktionov and J.F. Williams, Blow-up and global asymptotics of the limit unstable Cahn-Hilliard equation, SIAM, J. Math. Anal., 38 (2006), 64.   Google Scholar

[5]

V.A. Galaktionov, E. Mitidieri and S.I. Pohozaev, Variational approach to complicated similarity solutions of higher-order nonlinear PDEs. II,, Nonl. Anal.: RWA, 12 (2011), 2435.   Google Scholar

[6]

G.A. Klassen and E. Mitidieri, Standing wave solutions for a system derived from the FitzHugh-Nagumo equations for nerve conduction, SIAM, J. Math. Anal., 17 (1986), 74.   Google Scholar

[7]

A. Novick-Cohen, The Cahn-Hilliard equation: mathematical and modeling perspectives,, Adv. Math. Sci. Appl., 8 (1998), 965.   Google Scholar

[8]

L.A. Peletier and W.C. Troy, Spatial Patterns., Higher Order Models in Physics and Mechanics, (2001).   Google Scholar

[1]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[2]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[3]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[4]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[5]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[6]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[7]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[8]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[9]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[10]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[11]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[12]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[13]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[14]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[15]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[16]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[17]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[18]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[19]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[20]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

 Impact Factor: 

Metrics

  • PDF downloads (52)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]