Advanced Search
Article Contents
Article Contents

Noncommutative bi-symplectic $\mathbb{N}Q$-algebras of weight 1

Abstract Related Papers Cited by
  • It is well known that symplectic $\mathbb{N}Q$-manifolds of weight 1 are in 1-1 correspondence with Poisson manifolds. In this article, we prove a version of this correspondence in the framework of noncommutative algebraic geometry based on double derivations, as introduced by W. Crawley-Boevey, P. Etingof and V. Ginzburg. More precisely, we define noncommutative bi-symplectic $\mathbb{N}Q$-algebras and prove that bi-symplectic $\mathbb{N}Q$-algebras of weight 1 are in 1-1 correspondence with double Poisson algebras, as previously defined by M. Van den Bergh.
    Mathematics Subject Classification: Primary: 14A22.


    \begin{equation} \\ \end{equation}
  • [1]

    M. Alexandrov, M. Kontsevich, A. Schwarz and O. Zaboronsky, The geometry of the Master Equation and Topological Quantum Field Theory, Internat. J. Modern Phys. A 12, 7 (1997) 1405-1429.


    I. A. Batalin and G. A. Vilkovisky, Gauge algebra and quantization, Phys. Lett., 102B (1981), 27.


    A. S. Cattaneo and G. Felder, On the AKSZ formalism of the Poisson sigma model, Phys. Lett. B, 102 (1981), 27.


    W. Crawley-Boevey, Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities, Comment. Math. Helv., 74 (1999), 548-574.


    W. Crawley-Boevey, P. Etingof and V. Ginzburg, Noncommutative geometry and quiver algebras, Adv. Math., 209 (2007), 274-336.


    D. Cuntz and D. Quillen, Algebra extensions and nonsingularity, J. Amer. Math. Soc., 8 (1995), 251-289.


    D. R. Farkas and G. Letzter, Ring theory from symplectic geometry, J. Pure Appl. Algebra, 125 (1998), 155-190.


    V. GinzburgLectures on Noncommutative Geometry, Preprint arXiv:math.AG/0612139.


    M. Kontsevich and A. Rosenberg, Noncommutative smooth spaces. In: The Gelfand Mathematical Seminars, 1996-1999, 85-108, Bikhäuser, Boston, 2000.


    H. Matsumura, Commutative ring theory. Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, Cambridge-New York, 1989.


    D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids, In: Quantization, Poisson brackets and Beyond. Th. Voronov (ed.), Contemp. Math., 315, Amer. Math. Soc., Providence, RI, 2002.


    D. Roytenberg, AKSZ-BV Formalism and Courant Algebroids-induced Topological Field Theories, Lett. Math. Phys. 79, 2 (2007) 143159.


    A. Schwarz, Geometry of Batalin-Vilkovisky quantization, Commun. Math. Phys., 155 (1993), 249-260.


    P. Ševera, Some title containing the words "homotopy'' and "symplectic'', e.g. this one, In: Travaux mathématiques, Fasc. XVI, pp. 121-137. Univ. Luxemb., Luxembourg, 2005.


    M. Van den Bergh, Double Poisson algebras, Trans. Amer. Math. Soc., 360 (2008), 5711-5769.

  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views() PDF downloads(190) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint