2015, 2015(special): 19-28. doi: 10.3934/proc.2015.0019

Noncommutative bi-symplectic $\mathbb{N}Q$-algebras of weight 1

1. 

Instituto de Ciencias Matemáticas (CSIC-UAM-UC3M-UCM), Nicolás Cabrera 13–15, Cantoblanco, 28049 Madrid, Spain, Spain

Received  September 2014 Revised  September 2015 Published  November 2015

It is well known that symplectic $\mathbb{N}Q$-manifolds of weight 1 are in 1-1 correspondence with Poisson manifolds. In this article, we prove a version of this correspondence in the framework of noncommutative algebraic geometry based on double derivations, as introduced by W. Crawley-Boevey, P. Etingof and V. Ginzburg. More precisely, we define noncommutative bi-symplectic $\mathbb{N}Q$-algebras and prove that bi-symplectic $\mathbb{N}Q$-algebras of weight 1 are in 1-1 correspondence with double Poisson algebras, as previously defined by M. Van den Bergh.
Citation: Luis Álvarez–cónsul, David Fernández. Noncommutative bi-symplectic $\mathbb{N}Q$-algebras of weight 1. Conference Publications, 2015, 2015 (special) : 19-28. doi: 10.3934/proc.2015.0019
References:
[1]

M. Alexandrov, M. Kontsevich, A. Schwarz and O. Zaboronsky, The geometry of the Master Equation and Topological Quantum Field Theory,, Internat. J. Modern Phys. A 12, 7 (1997), 1405.   Google Scholar

[2]

I. A. Batalin and G. A. Vilkovisky, Gauge algebra and quantization,, Phys. Lett., 102B (1981).   Google Scholar

[3]

A. S. Cattaneo and G. Felder, On the AKSZ formalism of the Poisson sigma model,, Phys. Lett. B, 102 (1981).   Google Scholar

[4]

W. Crawley-Boevey, Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities,, Comment. Math. Helv., 74 (1999), 548.   Google Scholar

[5]

W. Crawley-Boevey, P. Etingof and V. Ginzburg, Noncommutative geometry and quiver algebras,, Adv. Math., 209 (2007), 274.   Google Scholar

[6]

D. Cuntz and D. Quillen, Algebra extensions and nonsingularity,, J. Amer. Math. Soc., 8 (1995), 251.   Google Scholar

[7]

D. R. Farkas and G. Letzter, Ring theory from symplectic geometry,, J. Pure Appl. Algebra, 125 (1998), 155.   Google Scholar

[8]

V. Ginzburg, Lectures on Noncommutative Geometry,, Preprint arXiv:math.AG/0612139., ().   Google Scholar

[9]

M. Kontsevich and A. Rosenberg, Noncommutative smooth spaces., In: The Gelfand Mathematical Seminars, (2000), 1996.   Google Scholar

[10]

H. Matsumura, Commutative ring theory., Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, 8 (1989).   Google Scholar

[11]

D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids,, In: Quantization, 315 (2002).   Google Scholar

[12]

D. Roytenberg, AKSZ-BV Formalism and Courant Algebroids-induced Topological Field Theories,, Lett. Math. Phys. 79, 2 (2007).   Google Scholar

[13]

A. Schwarz, Geometry of Batalin-Vilkovisky quantization,, Commun. Math. Phys., 155 (1993), 249.   Google Scholar

[14]

P. Ševera, Some title containing the words "homotopy'' and "symplectic'', e.g. this one,, In: Travaux mathématiques, (2005), 121.   Google Scholar

[15]

M. Van den Bergh, Double Poisson algebras,, Trans. Amer. Math. Soc., 360 (2008), 5711.   Google Scholar

show all references

References:
[1]

M. Alexandrov, M. Kontsevich, A. Schwarz and O. Zaboronsky, The geometry of the Master Equation and Topological Quantum Field Theory,, Internat. J. Modern Phys. A 12, 7 (1997), 1405.   Google Scholar

[2]

I. A. Batalin and G. A. Vilkovisky, Gauge algebra and quantization,, Phys. Lett., 102B (1981).   Google Scholar

[3]

A. S. Cattaneo and G. Felder, On the AKSZ formalism of the Poisson sigma model,, Phys. Lett. B, 102 (1981).   Google Scholar

[4]

W. Crawley-Boevey, Preprojective algebras, differential operators and a Conze embedding for deformations of Kleinian singularities,, Comment. Math. Helv., 74 (1999), 548.   Google Scholar

[5]

W. Crawley-Boevey, P. Etingof and V. Ginzburg, Noncommutative geometry and quiver algebras,, Adv. Math., 209 (2007), 274.   Google Scholar

[6]

D. Cuntz and D. Quillen, Algebra extensions and nonsingularity,, J. Amer. Math. Soc., 8 (1995), 251.   Google Scholar

[7]

D. R. Farkas and G. Letzter, Ring theory from symplectic geometry,, J. Pure Appl. Algebra, 125 (1998), 155.   Google Scholar

[8]

V. Ginzburg, Lectures on Noncommutative Geometry,, Preprint arXiv:math.AG/0612139., ().   Google Scholar

[9]

M. Kontsevich and A. Rosenberg, Noncommutative smooth spaces., In: The Gelfand Mathematical Seminars, (2000), 1996.   Google Scholar

[10]

H. Matsumura, Commutative ring theory., Cambridge Studies in Advanced Mathematics 8. Cambridge University Press, 8 (1989).   Google Scholar

[11]

D. Roytenberg, On the structure of graded symplectic supermanifolds and Courant algebroids,, In: Quantization, 315 (2002).   Google Scholar

[12]

D. Roytenberg, AKSZ-BV Formalism and Courant Algebroids-induced Topological Field Theories,, Lett. Math. Phys. 79, 2 (2007).   Google Scholar

[13]

A. Schwarz, Geometry of Batalin-Vilkovisky quantization,, Commun. Math. Phys., 155 (1993), 249.   Google Scholar

[14]

P. Ševera, Some title containing the words "homotopy'' and "symplectic'', e.g. this one,, In: Travaux mathématiques, (2005), 121.   Google Scholar

[15]

M. Van den Bergh, Double Poisson algebras,, Trans. Amer. Math. Soc., 360 (2008), 5711.   Google Scholar

[1]

Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124

[2]

Yongjie Wang, Nan Gao. Some properties for almost cellular algebras. Electronic Research Archive, 2021, 29 (1) : 1681-1689. doi: 10.3934/era.2020086

[3]

Bing Sun, Liangyun Chen, Yan Cao. On the universal $ \alpha $-central extensions of the semi-direct product of Hom-preLie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021004

[4]

Kengo Matsumoto. $ C^* $-algebras associated with asymptotic equivalence relations defined by hyperbolic toral automorphisms. Electronic Research Archive, , () : -. doi: 10.3934/era.2021006

[5]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[6]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[7]

Mehdi Badsi. Collisional sheath solutions of a bi-species Vlasov-Poisson-Boltzmann boundary value problem. Kinetic & Related Models, 2021, 14 (1) : 149-174. doi: 10.3934/krm.2020052

[8]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[9]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[10]

Linglong Du, Min Yang. Pointwise long time behavior for the mixed damped nonlinear wave equation in $ \mathbb{R}^n_+ $. Networks & Heterogeneous Media, 2020  doi: 10.3934/nhm.2020033

[11]

Kaixuan Zhu, Ji Li, Yongqin Xie, Mingji Zhang. Dynamics of non-autonomous fractional reaction-diffusion equations on $ \mathbb{R}^{N} $ driven by multiplicative noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020376

[12]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[13]

George W. Patrick. The geometry of convergence in numerical analysis. Journal of Computational Dynamics, 2021, 8 (1) : 33-58. doi: 10.3934/jcd.2021003

[14]

Lei Liu, Li Wu. Multiplicity of closed characteristics on $ P $-symmetric compact convex hypersurfaces in $ \mathbb{R}^{2n} $. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020378

[15]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[16]

Xinlin Cao, Huaian Diao, Jinhong Li. Some recent progress on inverse scattering problems within general polyhedral geometry. Electronic Research Archive, 2021, 29 (1) : 1753-1782. doi: 10.3934/era.2020090

[17]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[18]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[19]

Kai Zhang, Xiaoqi Yang, Song Wang. Solution method for discrete double obstacle problems based on a power penalty approach. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2021018

[20]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

 Impact Factor: 

Metrics

  • PDF downloads (63)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]