-
Previous Article
Stabilization of a hyperbolic/elliptic system modelling the viscoelastic-gravitational deformation in a multilayered Earth
- PROC Home
- This Issue
-
Next Article
Hartman-type conditions for multivalued Dirichlet problem in abstract spaces
Subexponential growth rates in functional differential equations
1. | Edgeworth Centre for Financial Mathematics, School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9, Ireland |
2. | School of Mathematical Sciences, Dublin City University, Glasnevin, Dublin 9,, Ireland |
References:
show all references
References:
[1] |
Frank Blume. Realizing subexponential entropy growth rates by cutting and stacking. Discrete and Continuous Dynamical Systems - B, 2015, 20 (10) : 3435-3459. doi: 10.3934/dcdsb.2015.20.3435 |
[2] |
Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793 |
[3] |
Marie Doumic, Miguel Escobedo. Time asymptotics for a critical case in fragmentation and growth-fragmentation equations. Kinetic and Related Models, 2016, 9 (2) : 251-297. doi: 10.3934/krm.2016.9.251 |
[4] |
Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure and Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016 |
[5] |
Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103 |
[6] |
Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033 |
[7] |
Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27 |
[8] |
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 |
[9] |
Olivier Hénot. On polynomial forms of nonlinear functional differential equations. Journal of Computational Dynamics, 2021, 8 (3) : 309-323. doi: 10.3934/jcd.2021013 |
[10] |
David Lipshutz. Exit time asymptotics for small noise stochastic delay differential equations. Discrete and Continuous Dynamical Systems, 2018, 38 (6) : 3099-3138. doi: 10.3934/dcds.2018135 |
[11] |
Qingwu Gao, Zhongquan Huang, Houcai Shen, Juan Zheng. Asymptotics for random-time ruin probability in a time-dependent renewal risk model with subexponential claims. Journal of Industrial and Management Optimization, 2016, 12 (1) : 31-43. doi: 10.3934/jimo.2016.12.31 |
[12] |
Jun Zhou, Jun Shen. Positive solutions of iterative functional differential equations and application to mixed-type functional differential equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3605-3624. doi: 10.3934/dcdsb.2021198 |
[13] |
John A. D. Appleby, John A. Daniels. Exponential growth in the solution of an affine stochastic differential equation with an average functional and financial market bubbles. Conference Publications, 2011, 2011 (Special) : 91-101. doi: 10.3934/proc.2011.2011.91 |
[14] |
Daniel Balagué, José A. Cañizo, Pierre Gabriel. Fine asymptotics of profiles and relaxation to equilibrium for growth-fragmentation equations with variable drift rates. Kinetic and Related Models, 2013, 6 (2) : 219-243. doi: 10.3934/krm.2013.6.219 |
[15] |
Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283 |
[16] |
Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687 |
[17] |
Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1279-1298. doi: 10.3934/dcdsb.2019220 |
[18] |
Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005 |
[19] |
Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure and Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291 |
[20] |
R.S. Dahiya, A. Zafer. Oscillatory theorems of n-th order functional differential equations. Conference Publications, 2001, 2001 (Special) : 435-443. doi: 10.3934/proc.2001.2001.435 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]