2015, 2015(special): 66-74. doi: 10.3934/proc.2015.0066

Stabilization of a hyperbolic/elliptic system modelling the viscoelastic-gravitational deformation in a multilayered Earth

1. 

European Center for Geodynamics and Seismology, Rue Josy Welter, 19. L-7256, Walferdange, Grand-Duchy of Luxembourg

2. 

Instituto de Matemática Interdisciplinar and Dpto. Mat. Aplicada. (UCM), Facultad de Matemáticas, Plaza de las Ciencias, 3. 28040, Madrid, Spain

Received  September 2014 Revised  December 2014 Published  November 2015

In the last 30 years several mathematical studies have been devoted to the viscoelastic-gravitational coupling in stationary and transient regimes either for static case or for hyperbolic case. However, to the best of our knowledge there is a lack of mathematical study of the stabilization as $t$ goes to infinity of a viscoelastic-gravitational models crustal deformations of multilayered Earth. Here we prove that, under some additional conditions on the data, the difference of the viscoelastic and elastic solutions converges to zero, as $t$ goes to infinity, in a suitable functional space. The proof of that uses a reformulation of the hyperbolic/elliptic system in terms of a nonlocal hyperbolic system.
Citation: Alicia Arjona, Jesús Ildefonso Díaz. Stabilization of a hyperbolic/elliptic system modelling the viscoelastic-gravitational deformation in a multilayered Earth. Conference Publications, 2015, 2015 (special) : 66-74. doi: 10.3934/proc.2015.0066
References:
[1]

A. Arjona, J.I. Díaz, J. Fernández and J.B. Rundle, On the Mathematical Analysis of an Elastic-gravitational Layered Earth Model for Magmatic Intrusion: The Stationary Case,, Pure Appl. Geophys., 165 (2008), 1465.   Google Scholar

[2]

A. Arjona and J.I. Díaz, On the mathematical analysis of a viscoealstic-gravitational layered earth model for magmatic intrusion: The dynamic Case,, Submitted., ().   Google Scholar

[3]

T. Cazenave and A. Haraux, Introduction aux Problèmes d'évolution Semi-Linéaires. Ellipses ,, Paris, (1990).   Google Scholar

[4]

J.I. Díaz and F. de Thelin, On a nonlinear parabolic problems arising in some models related to turbulence flows,, SIAM Journal of Mathematical Analysis, 25 (1994), 1085.   Google Scholar

[5]

J. Fernández, J.M. Carrasco, J.B. Rundle and V. Araña, Geodetic methods for detecting volcanic unrest: a theoretical approach,, Bulletin of Volcanology, 60 (1999), 534.   Google Scholar

[6]

J. Fernández, M. Charco, K.F. Tiampo, G. Jentzsch and J.B. Rundle, Joint interpretation of displacement and gravity data in volcanic areas. A test example: Long Valley Caldera, California,, J.Volcanology and Geothermal Research, 28 (2001), 1063.   Google Scholar

[7]

J. Fernández and J.B. Rundle, Postseismic visoelastic-gravitational half space computations: Problems and solutions,, Geophysical Research Letters, 31 (2004).   Google Scholar

[8]

A. Folch, J. Fernández, J.B. Rundle and J. Martí, Ground deformation in a viscoelastic medium composed of a layer overlying a half space: A comparison between point and extended sources,, Geophys.J.Int., 140 (2000), 37.   Google Scholar

[9]

A.E.H. Love, Some problems in Geodynamics,, Cambridge University Press, (1911).   Google Scholar

[10]

J.B. Rundle, Static elastic-gravitational deformation of a layared half space by point couple sources,, J. Geophys.Res., 85 (1980), 5355.   Google Scholar

[11]

J.B. Rundle, Numerical Evaluation of static elastic-gravitational deformation of a layared half space by point couple sources,, Rep., (1980), 80.   Google Scholar

[12]

J.B. Rundle, Deformation, gravity and potential changes due to volcanic loading of the crust,, J. Geophys.R, 87 (1982), 729.   Google Scholar

[13]

J.B. Rundle, Viscoeslastic-Gravitational Deformation by a Rectangular Thrust Fault in a Layered Earth,, J. Geophys.Res., 87 (): 7787.   Google Scholar

show all references

References:
[1]

A. Arjona, J.I. Díaz, J. Fernández and J.B. Rundle, On the Mathematical Analysis of an Elastic-gravitational Layered Earth Model for Magmatic Intrusion: The Stationary Case,, Pure Appl. Geophys., 165 (2008), 1465.   Google Scholar

[2]

A. Arjona and J.I. Díaz, On the mathematical analysis of a viscoealstic-gravitational layered earth model for magmatic intrusion: The dynamic Case,, Submitted., ().   Google Scholar

[3]

T. Cazenave and A. Haraux, Introduction aux Problèmes d'évolution Semi-Linéaires. Ellipses ,, Paris, (1990).   Google Scholar

[4]

J.I. Díaz and F. de Thelin, On a nonlinear parabolic problems arising in some models related to turbulence flows,, SIAM Journal of Mathematical Analysis, 25 (1994), 1085.   Google Scholar

[5]

J. Fernández, J.M. Carrasco, J.B. Rundle and V. Araña, Geodetic methods for detecting volcanic unrest: a theoretical approach,, Bulletin of Volcanology, 60 (1999), 534.   Google Scholar

[6]

J. Fernández, M. Charco, K.F. Tiampo, G. Jentzsch and J.B. Rundle, Joint interpretation of displacement and gravity data in volcanic areas. A test example: Long Valley Caldera, California,, J.Volcanology and Geothermal Research, 28 (2001), 1063.   Google Scholar

[7]

J. Fernández and J.B. Rundle, Postseismic visoelastic-gravitational half space computations: Problems and solutions,, Geophysical Research Letters, 31 (2004).   Google Scholar

[8]

A. Folch, J. Fernández, J.B. Rundle and J. Martí, Ground deformation in a viscoelastic medium composed of a layer overlying a half space: A comparison between point and extended sources,, Geophys.J.Int., 140 (2000), 37.   Google Scholar

[9]

A.E.H. Love, Some problems in Geodynamics,, Cambridge University Press, (1911).   Google Scholar

[10]

J.B. Rundle, Static elastic-gravitational deformation of a layared half space by point couple sources,, J. Geophys.Res., 85 (1980), 5355.   Google Scholar

[11]

J.B. Rundle, Numerical Evaluation of static elastic-gravitational deformation of a layared half space by point couple sources,, Rep., (1980), 80.   Google Scholar

[12]

J.B. Rundle, Deformation, gravity and potential changes due to volcanic loading of the crust,, J. Geophys.R, 87 (1982), 729.   Google Scholar

[13]

J.B. Rundle, Viscoeslastic-Gravitational Deformation by a Rectangular Thrust Fault in a Layered Earth,, J. Geophys.Res., 87 (): 7787.   Google Scholar

[1]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[2]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[5]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[6]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[7]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[8]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[9]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[10]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[11]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[12]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[13]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[14]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[15]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[16]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[17]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[18]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[19]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[20]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

 Impact Factor: 

Metrics

  • PDF downloads (32)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]