
Previous Article
Optimal control in a free boundary fluidelasticity interaction
 PROC Home
 This Issue

Next Article
Nonlocal problems in Hilbert spaces
The role of aerodynamic forces in a mathematical model for suspension bridges
1.  Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy 
2.  Dipartimento di Matematica Politecnico di Milano, Piazza Leonardo da Vinci, 32, 20133 Milano 
References:
show all references
References:
[1] 
P. J. McKenna. Oscillations in suspension bridges, vertical and torsional. Discrete and Continuous Dynamical Systems  S, 2014, 7 (4) : 785791. doi: 10.3934/dcdss.2014.7.785 
[2] 
Alberto Ferrero, Filippo Gazzola. A partially hinged rectangular plate as a model for suspension bridges. Discrete and Continuous Dynamical Systems, 2015, 35 (12) : 58795908. doi: 10.3934/dcds.2015.35.5879 
[3] 
Guy V. Norton, Robert D. Purrington. The Westervelt equation with a causal propagation operator coupled to the bioheat equation.. Evolution Equations and Control Theory, 2016, 5 (3) : 449461. doi: 10.3934/eect.2016013 
[4] 
Zayd Hajjej, Mohammad AlGharabli, Salim Messaoudi. Stability of a suspension bridge with a localized structural damping. Discrete and Continuous Dynamical Systems  S, 2022, 15 (5) : 11651181. doi: 10.3934/dcdss.2021089 
[5] 
Thierry Horsin, Peter I. Kogut, Olivier Wilk. Optimal $L^2$control problem in coefficients for a linear elliptic equation. II. Approximation of solutions and optimality conditions. Mathematical Control and Related Fields, 2016, 6 (4) : 595628. doi: 10.3934/mcrf.2016017 
[6] 
Sebastián Ferrer, Martin Lara. Families of canonical transformations by HamiltonJacobiPoincaré equation. Application to rotational and orbital motion. Journal of Geometric Mechanics, 2010, 2 (3) : 223241. doi: 10.3934/jgm.2010.2.223 
[7] 
Manuel de León, Juan Carlos Marrero, David Martín de Diego. Linear almost Poisson structures and HamiltonJacobi equation. Applications to nonholonomic mechanics. Journal of Geometric Mechanics, 2010, 2 (2) : 159198. doi: 10.3934/jgm.2010.2.159 
[8] 
Thierry Horsin, Peter I. Kogut. Optimal $L^2$control problem in coefficients for a linear elliptic equation. I. Existence result. Mathematical Control and Related Fields, 2015, 5 (1) : 7396. doi: 10.3934/mcrf.2015.5.73 
[9] 
Gongwei Liu, Baowei Feng, Xinguang Yang. Longtime dynamics for a type of suspension bridge equation with past history and time delay. Communications on Pure and Applied Analysis, 2020, 19 (10) : 49955013. doi: 10.3934/cpaa.2020224 
[10] 
José M. Amigó, Isabelle Catto, Ángel Giménez, José Valero. Attractors for a nonlinear parabolic equation modelling suspension flows. Discrete and Continuous Dynamical Systems  B, 2009, 11 (2) : 205231. doi: 10.3934/dcdsb.2009.11.205 
[11] 
Ling Xu, Jianhua Huang, Qiaozhen Ma. Upper semicontinuity of random attractors for the stochastic nonautonomous suspension bridge equation with memory. Discrete and Continuous Dynamical Systems  B, 2019, 24 (11) : 59595979. doi: 10.3934/dcdsb.2019115 
[12] 
Suping Wang, Qiaozhen Ma. Existence of pullback attractors for the nonautonomous suspension bridge equation with time delay. Discrete and Continuous Dynamical Systems  B, 2020, 25 (4) : 12991316. doi: 10.3934/dcdsb.2019221 
[13] 
Ling Xu, Jianhua Huang, Qiaozhen Ma. Random exponential attractor for stochastic nonautonomous suspension bridge equation with additive white noise. Discrete and Continuous Dynamical Systems  B, 2022 doi: 10.3934/dcdsb.2021318 
[14] 
H. W. J. Lee, Y. C. E. Lee, Kar Hung Wong. Differential equation approximation and enhancing control method for finding the PID gain of a quartercar suspension model with statedependent ODE. Journal of Industrial and Management Optimization, 2020, 16 (5) : 23052330. doi: 10.3934/jimo.2019055 
[15] 
Ivana Bochicchio, Claudio Giorgi, Elena Vuk. On the viscoelastic coupled suspension bridge. Evolution Equations and Control Theory, 2014, 3 (3) : 373397. doi: 10.3934/eect.2014.3.373 
[16] 
Thomas I. Vogel. Comments on radially symmetric liquid bridges with inflected profiles. Conference Publications, 2005, 2005 (Special) : 862867. doi: 10.3934/proc.2005.2005.862 
[17] 
Alex L Castro, Wyatt Howard, Corey Shanbrom. Bridges between subriemannian geometry and algebraic geometry: Now and then. Conference Publications, 2015, 2015 (special) : 239247. doi: 10.3934/proc.2015.0239 
[18] 
O. A. Veliev. Essential spectral singularities and the spectral expansion for the Hill operator. Communications on Pure and Applied Analysis, 2017, 16 (6) : 22272251. doi: 10.3934/cpaa.2017110 
[19] 
Amadeu Delshams, Josep J. Masdemont, Pablo Roldán. Computing the scattering map in the spatial Hill's problem. Discrete and Continuous Dynamical Systems  B, 2008, 10 (2&3, September) : 455483. doi: 10.3934/dcdsb.2008.10.455 
[20] 
Chao Wang, Dingbian Qian, Qihuai Liu. Impact oscillators of Hill's type with indefinite weight: Periodic and chaotic dynamics. Discrete and Continuous Dynamical Systems, 2016, 36 (4) : 23052328. doi: 10.3934/dcds.2016.36.2305 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]