2015, 2015(special): 132-141. doi: 10.3934/proc.2015.0132

Analysis of the archetypal functional equation in the non-critical case

1. 

Department of Statistics, School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom

2. 

Department of Mathematics, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel

3. 

Department of Mathematics, University of North Carolina at Charlotte, Charlotte, NC 28223, United States

Received  September 2014 Revised  December 2014 Published  November 2015

We study the archetypal functional equation of the form $y(x)=\iint_{\mathbb{R}^2} y(a(x-b))\,\mu(da,db)$ ($x\in\mathbb{R}$), where $\mu$ is a probability measure on $\mathbb{R}^2$; equivalently, $y(x)=\mathbb{E}\{y(\alpha(x-\beta))\}$, where $\mathbb{E}$ is expectation with respect to the distribution $\mu$ of random coefficients $(\alpha,\beta)$. Existence of non-trivial (i.e. non-constant) bounded continuous solutions is governed by the value $K:=\iint_{\mathbb{R}^2}\ln|a|\,\mu(da,db) =\mathbb{E}\{\ln|\alpha|\}$; namely, under mild technical conditions no such solutions exist whenever $K<0$, whereas if $K>0$ (and $\alpha>0$) then there is a non-trivial solution constructed as the distribution function of a certain random series representing a self-similar measure associated with $(\alpha,\beta)$. Further results are obtained in the supercritical case $K>0$, including existence, uniqueness and a maximum principle. The case with $\mathbb{P}(\alpha<0)>0$ is drastically different from that with $\alpha>0$; in particular, we prove that a bounded solution $y(\cdot)$ possessing limits at $\pm\infty$ must be constant. The proofs employ martingale techniques applied to the martingale $y(X_n)$, where $(X_n)$ is an associated Markov chain with jumps of the form $x ⇝ \alpha(x-\beta)$.
Citation: Leonid V. Bogachev, Gregory Derfel, Stanislav A. Molchanov. Analysis of the archetypal functional equation in the non-critical case. Conference Publications, 2015, 2015 (special) : 132-141. doi: 10.3934/proc.2015.0132
References:
[1]

L. Bogachev, G. Derfel, S. Molchanov and J. Ockendon, On bounded solutions of the balanced generalized pantograph equation,, in Topics in Stochastic Analysis and Nonparametric Estimation (eds. P.-L. Chow et al.), (2008), 29. Google Scholar

[2]

L. V. Bogachev, G. Derfel and S. A. Molchanov, On bounded continuous solutions of the archetypal equation with rescaling,, Proc. Royal Soc. A, 471 (2015), 1. Google Scholar

[3]

B. van Brunt and G. C. Wake, A Mellin transform solution to a second-order pantograph equation with linear dispersion arising in a cell growth model,, European J. Appl. Math., 22 (2011), 151. Google Scholar

[4]

A. S. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision,, Mem. Amer. Math. Soc., 93 (1991). Google Scholar

[5]

G. Choquet and J. Deny, Sur l'équation de convolution $\mu=\mu\star\sigma$, (French) [On the convolution equation $\mu=\mu\star\sigma$],, C. R. Acad. Sci. Paris, 250 (1960), 799. Google Scholar

[6]

I. Daubechies, Ten Lectures on Wavelets,, SIAM, (1992). Google Scholar

[7]

I. Daubechies and J. C. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions,, SIAM J. Math. Anal., 22 (1991), 1388. Google Scholar

[8]

G. A. Derfel, Probabilistic method for a class of functional-differential equations,, Ukrainian Math. J., 41 (1989), 1137. Google Scholar

[9]

G. Derfel, N. Dyn and D. Levin, Generalized refinement equations and subdivision processes,, J. Approx. Theory, 80 (1995), 272. Google Scholar

[10]

G. Derfel and A. Iserles, The pantograph equation in the complex plane,, J. Math. Anal. Appl., 213 (1997), 117. Google Scholar

[11]

G. Derfel and R. Schilling, Spatially chaotic configurations and functional equations with rescaling,, J. Phys. A, 29 (1996), 4537. Google Scholar

[12]

A. K. Grintsevichyus, On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines,, Theor. Probab. Appl., 19 (1974), 163. Google Scholar

[13]

J. E. Hutchinson, Fractals and self similarlity,, Indiana Univ. Math. J., 30 (1981), 713. Google Scholar

[14]

A. Iserles, On the generalized pantograph functional-differential equation,, European J. Appl. Math., 4 (1993), 1. Google Scholar

[15]

T. Kato and J. B. McLeod, The functional-differential equation $y'(x)=a y(\lambda x)+b y(x)$,, Bull. Amer. Math. Soc., 77 (1971), 891. Google Scholar

[16]

J. R. Ockendon and A. B. Tayler, The dynamics of a current collection system for an electric locomotive,, Proc. Royal Soc. London A, 322 (1971), 447. Google Scholar

[17]

D. Revuz, Markov Chains, $2^{nd}$ edition,, North-Holland, (1984). Google Scholar

[18]

V. A. Rvachev, Compactly supported solutions of functional-differential equations and their applications,, Russian Math. Surveys, 45 (1990), 87. Google Scholar

[19]

R. Schilling, Spatially chaotic structures,, in Nonlinear Dynamics in Solids (ed. H. Thomas), (1992), 213. Google Scholar

[20]

A. N. Shiryaev, Probability, $2^{nd}$ edition,, Springer-Verlag, (1996). Google Scholar

[21]

B. Solomyak, Notes on Bernoulli convolutions,, in Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, (2004), 207. Google Scholar

[22]

N. Steinmetz and P. Volkmann, Funktionalgleichungen für konstante Funktionen, (German) [Functional equations for constant functions],, Aequationes Math., 27 (1984), 87. Google Scholar

[23]

G. Strang, Wavelets and dilation equations: A brief introduction,, SIAM Rev., 31 (1989), 614. Google Scholar

show all references

References:
[1]

L. Bogachev, G. Derfel, S. Molchanov and J. Ockendon, On bounded solutions of the balanced generalized pantograph equation,, in Topics in Stochastic Analysis and Nonparametric Estimation (eds. P.-L. Chow et al.), (2008), 29. Google Scholar

[2]

L. V. Bogachev, G. Derfel and S. A. Molchanov, On bounded continuous solutions of the archetypal equation with rescaling,, Proc. Royal Soc. A, 471 (2015), 1. Google Scholar

[3]

B. van Brunt and G. C. Wake, A Mellin transform solution to a second-order pantograph equation with linear dispersion arising in a cell growth model,, European J. Appl. Math., 22 (2011), 151. Google Scholar

[4]

A. S. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision,, Mem. Amer. Math. Soc., 93 (1991). Google Scholar

[5]

G. Choquet and J. Deny, Sur l'équation de convolution $\mu=\mu\star\sigma$, (French) [On the convolution equation $\mu=\mu\star\sigma$],, C. R. Acad. Sci. Paris, 250 (1960), 799. Google Scholar

[6]

I. Daubechies, Ten Lectures on Wavelets,, SIAM, (1992). Google Scholar

[7]

I. Daubechies and J. C. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions,, SIAM J. Math. Anal., 22 (1991), 1388. Google Scholar

[8]

G. A. Derfel, Probabilistic method for a class of functional-differential equations,, Ukrainian Math. J., 41 (1989), 1137. Google Scholar

[9]

G. Derfel, N. Dyn and D. Levin, Generalized refinement equations and subdivision processes,, J. Approx. Theory, 80 (1995), 272. Google Scholar

[10]

G. Derfel and A. Iserles, The pantograph equation in the complex plane,, J. Math. Anal. Appl., 213 (1997), 117. Google Scholar

[11]

G. Derfel and R. Schilling, Spatially chaotic configurations and functional equations with rescaling,, J. Phys. A, 29 (1996), 4537. Google Scholar

[12]

A. K. Grintsevichyus, On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines,, Theor. Probab. Appl., 19 (1974), 163. Google Scholar

[13]

J. E. Hutchinson, Fractals and self similarlity,, Indiana Univ. Math. J., 30 (1981), 713. Google Scholar

[14]

A. Iserles, On the generalized pantograph functional-differential equation,, European J. Appl. Math., 4 (1993), 1. Google Scholar

[15]

T. Kato and J. B. McLeod, The functional-differential equation $y'(x)=a y(\lambda x)+b y(x)$,, Bull. Amer. Math. Soc., 77 (1971), 891. Google Scholar

[16]

J. R. Ockendon and A. B. Tayler, The dynamics of a current collection system for an electric locomotive,, Proc. Royal Soc. London A, 322 (1971), 447. Google Scholar

[17]

D. Revuz, Markov Chains, $2^{nd}$ edition,, North-Holland, (1984). Google Scholar

[18]

V. A. Rvachev, Compactly supported solutions of functional-differential equations and their applications,, Russian Math. Surveys, 45 (1990), 87. Google Scholar

[19]

R. Schilling, Spatially chaotic structures,, in Nonlinear Dynamics in Solids (ed. H. Thomas), (1992), 213. Google Scholar

[20]

A. N. Shiryaev, Probability, $2^{nd}$ edition,, Springer-Verlag, (1996). Google Scholar

[21]

B. Solomyak, Notes on Bernoulli convolutions,, in Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, (2004), 207. Google Scholar

[22]

N. Steinmetz and P. Volkmann, Funktionalgleichungen für konstante Funktionen, (German) [Functional equations for constant functions],, Aequationes Math., 27 (1984), 87. Google Scholar

[23]

G. Strang, Wavelets and dilation equations: A brief introduction,, SIAM Rev., 31 (1989), 614. Google Scholar

[1]

Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147

[2]

Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete & Continuous Dynamical Systems - A, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005

[3]

Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793

[4]

Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure & Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016

[5]

Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete & Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033

[6]

Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete & Continuous Dynamical Systems - A, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27

[7]

John A. D. Appleby, Denis D. Patterson. Subexponential growth rates in functional differential equations. Conference Publications, 2015, 2015 (special) : 56-65. doi: 10.3934/proc.2015.0056

[8]

Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167

[9]

Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549

[10]

Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete & Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281

[11]

Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete & Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321

[12]

Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283

[13]

Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687

[14]

R.S. Dahiya, A. Zafer. Oscillatory theorems of n-th order functional differential equations. Conference Publications, 2001, 2001 (Special) : 435-443. doi: 10.3934/proc.2001.2001.435

[15]

Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure & Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291

[16]

Minghui Song, Liangjian Hu, Xuerong Mao, Liguo Zhang. Khasminskii-type theorems for stochastic functional differential equations. Discrete & Continuous Dynamical Systems - B, 2013, 18 (6) : 1697-1714. doi: 10.3934/dcdsb.2013.18.1697

[17]

Ismael Maroto, Carmen NÚÑez, Rafael Obaya. Dynamical properties of nonautonomous functional differential equations with state-dependent delay. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 3939-3961. doi: 10.3934/dcds.2017167

[18]

Shigui Ruan, Junjie Wei, Jianhong Wu. Bifurcation from a homoclinic orbit in partial functional differential equations. Discrete & Continuous Dynamical Systems - A, 2003, 9 (5) : 1293-1322. doi: 10.3934/dcds.2003.9.1293

[19]

Marat Akhmet. Quasilinear retarded differential equations with functional dependence on piecewise constant argument. Communications on Pure & Applied Analysis, 2014, 13 (2) : 929-947. doi: 10.3934/cpaa.2014.13.929

[20]

Ferenc Hartung, Janos Turi. Linearized stability in functional differential equations with state-dependent delays. Conference Publications, 2001, 2001 (Special) : 416-425. doi: 10.3934/proc.2001.2001.416

 Impact Factor: 

Metrics

  • PDF downloads (14)
  • HTML views (0)
  • Cited by (0)

[Back to Top]