\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Analysis of the archetypal functional equation in the non-critical case

Abstract Related Papers Cited by
  • We study the archetypal functional equation of the form $y(x)=\iint_{\mathbb{R}^2} y(a(x-b))\,\mu(da,db)$ ($x\in\mathbb{R}$), where $\mu$ is a probability measure on $\mathbb{R}^2$; equivalently, $y(x)=\mathbb{E}\{y(\alpha(x-\beta))\}$, where $\mathbb{E}$ is expectation with respect to the distribution $\mu$ of random coefficients $(\alpha,\beta)$. Existence of non-trivial (i.e. non-constant) bounded continuous solutions is governed by the value $K:=\iint_{\mathbb{R}^2}\ln|a|\,\mu(da,db) =\mathbb{E}\{\ln|\alpha|\}$; namely, under mild technical conditions no such solutions exist whenever $K<0$, whereas if $K>0$ (and $\alpha>0$) then there is a non-trivial solution constructed as the distribution function of a certain random series representing a self-similar measure associated with $(\alpha,\beta)$. Further results are obtained in the supercritical case $K>0$, including existence, uniqueness and a maximum principle. The case with $\mathbb{P}(\alpha<0)>0$ is drastically different from that with $\alpha>0$; in particular, we prove that a bounded solution $y(\cdot)$ possessing limits at $\pm\infty$ must be constant. The proofs employ martingale techniques applied to the martingale $y(X_n)$, where $(X_n)$ is an associated Markov chain with jumps of the form $x ⇝ \alpha(x-\beta)$.
    Mathematics Subject Classification: Primary: 39B05; Secondary: 34K06, 39A22, 60G42, 60J05.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    L. Bogachev, G. Derfel, S. Molchanov and J. Ockendon, On bounded solutions of the balanced generalized pantograph equation, in Topics in Stochastic Analysis and Nonparametric Estimation (eds. P.-L. Chow et al.), Springer-Verlag, New York, 2008, pp. 29-49.

    [2]

    L. V. Bogachev, G. Derfel and S. A. Molchanov, On bounded continuous solutions of the archetypal equation with rescaling, Proc. Royal Soc. A, 471 (2015), 20150351, 1-19.

    [3]

    B. van Brunt and G. C. Wake, A Mellin transform solution to a second-order pantograph equation with linear dispersion arising in a cell growth model, European J. Appl. Math., 22 (2011), 151-168.

    [4]

    A. S. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93 (1991), no. 453.

    [5]

    G. Choquet and J. Deny, Sur l'équation de convolution $\mu=\mu\star\sigma$, (French) [On the convolution equation $\mu=\mu\star\sigma$], C. R. Acad. Sci. Paris, 250 (1960), 799-801.

    [6]

    I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.

    [7]

    I. Daubechies and J. C. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions, SIAM J. Math. Anal., 22 (1991), 1388-1410.

    [8]

    G. A. Derfel, Probabilistic method for a class of functional-differential equations, Ukrainian Math. J., 41 (1989), 1137-1141 (1990).

    [9]

    G. Derfel, N. Dyn and D. Levin, Generalized refinement equations and subdivision processes, J. Approx. Theory, 80 (1995), 272-297.

    [10]

    G. Derfel and A. Iserles, The pantograph equation in the complex plane, J. Math. Anal. Appl., 213 (1997), 117-132.

    [11]

    G. Derfel and R. Schilling, Spatially chaotic configurations and functional equations with rescaling, J. Phys. A, 29 (1996), 4537-4547.

    [12]

    A. K. Grintsevichyus, On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines, Theor. Probab. Appl., 19 (1974), 163-168.

    [13]

    J. E. Hutchinson, Fractals and self similarlity, Indiana Univ. Math. J., 30 (1981), 713-747.

    [14]

    A. Iserles, On the generalized pantograph functional-differential equation, European J. Appl. Math., 4 (1993), 1-38.

    [15]

    T. Kato and J. B. McLeod, The functional-differential equation $y'(x)=a y(\lambda x)+b y(x)$, Bull. Amer. Math. Soc., 77 (1971), 891-937.

    [16]

    J. R. Ockendon and A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Royal Soc. London A, 322 (1971), 447-468.

    [17]

    D. Revuz, Markov Chains, $2^{nd}$ edition, North-Holland, Amsterdam, 1984.

    [18]

    V. A. Rvachev, Compactly supported solutions of functional-differential equations and their applications, Russian Math. Surveys, 45 (1) (1990), 87-120.

    [19]

    R. Schilling, Spatially chaotic structures, in Nonlinear Dynamics in Solids (ed. H. Thomas), Springer-Verlag, Berlin, 1992, pp. 213-241.

    [20]

    A. N. Shiryaev, Probability, $2^{nd}$ edition, Springer-Verlag, New York, 1996.

    [21]

    B. Solomyak, Notes on Bernoulli convolutions, in Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 1 (eds. M. L. Lapidus and M. van Frankenhuijsen), Amer. Math. Soc., Providence, RI, 2004, pp. 207-230.

    [22]

    N. Steinmetz and P. Volkmann, Funktionalgleichungen für konstante Funktionen, (German) [Functional equations for constant functions], Aequationes Math., 27 (1984), 87-96.

    [23]

    G. Strang, Wavelets and dilation equations: A brief introduction, SIAM Rev., 31 (1989), 614-627.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(99) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return