[1]
|
L. Bogachev, G. Derfel, S. Molchanov and J. Ockendon, On bounded solutions of the balanced generalized pantograph equation, in Topics in Stochastic Analysis and Nonparametric Estimation (eds. P.-L. Chow et al.), Springer-Verlag, New York, 2008, pp. 29-49.
|
[2]
|
L. V. Bogachev, G. Derfel and S. A. Molchanov, On bounded continuous solutions of the archetypal equation with rescaling, Proc. Royal Soc. A, 471 (2015), 20150351, 1-19.
|
[3]
|
B. van Brunt and G. C. Wake, A Mellin transform solution to a second-order pantograph equation with linear dispersion arising in a cell growth model, European J. Appl. Math., 22 (2011), 151-168.
|
[4]
|
A. S. Cavaretta, W. Dahmen and C. A. Micchelli, Stationary subdivision, Mem. Amer. Math. Soc., 93 (1991), no. 453.
|
[5]
|
G. Choquet and J. Deny, Sur l'équation de convolution $\mu=\mu\star\sigma$, (French) [On the convolution equation $\mu=\mu\star\sigma$], C. R. Acad. Sci. Paris, 250 (1960), 799-801.
|
[6]
|
I. Daubechies, Ten Lectures on Wavelets, SIAM, Philadelphia, PA, 1992.
|
[7]
|
I. Daubechies and J. C. Lagarias, Two-scale difference equations. I. Existence and global regularity of solutions, SIAM J. Math. Anal., 22 (1991), 1388-1410.
|
[8]
|
G. A. Derfel, Probabilistic method for a class of functional-differential equations, Ukrainian Math. J., 41 (1989), 1137-1141 (1990).
|
[9]
|
G. Derfel, N. Dyn and D. Levin, Generalized refinement equations and subdivision processes, J. Approx. Theory, 80 (1995), 272-297.
|
[10]
|
G. Derfel and A. Iserles, The pantograph equation in the complex plane, J. Math. Anal. Appl., 213 (1997), 117-132.
|
[11]
|
G. Derfel and R. Schilling, Spatially chaotic configurations and functional equations with rescaling, J. Phys. A, 29 (1996), 4537-4547.
|
[12]
|
A. K. Grintsevichyus, On the continuity of the distribution of a sum of dependent variables connected with independent walks on lines, Theor. Probab. Appl., 19 (1974), 163-168.
|
[13]
|
J. E. Hutchinson, Fractals and self similarlity, Indiana Univ. Math. J., 30 (1981), 713-747.
|
[14]
|
A. Iserles, On the generalized pantograph functional-differential equation, European J. Appl. Math., 4 (1993), 1-38.
|
[15]
|
T. Kato and J. B. McLeod, The functional-differential equation $y'(x)=a y(\lambda x)+b y(x)$, Bull. Amer. Math. Soc., 77 (1971), 891-937.
|
[16]
|
J. R. Ockendon and A. B. Tayler, The dynamics of a current collection system for an electric locomotive, Proc. Royal Soc. London A, 322 (1971), 447-468.
|
[17]
|
D. Revuz, Markov Chains, $2^{nd}$ edition, North-Holland, Amsterdam, 1984.
|
[18]
|
V. A. Rvachev, Compactly supported solutions of functional-differential equations and their applications, Russian Math. Surveys, 45 (1) (1990), 87-120.
|
[19]
|
R. Schilling, Spatially chaotic structures, in Nonlinear Dynamics in Solids (ed. H. Thomas), Springer-Verlag, Berlin, 1992, pp. 213-241.
|
[20]
|
A. N. Shiryaev, Probability, $2^{nd}$ edition, Springer-Verlag, New York, 1996.
|
[21]
|
B. Solomyak, Notes on Bernoulli convolutions, in Fractal Geometry and Applications: A Jubilee of Benoît Mandelbrot, Part 1 (eds. M. L. Lapidus and M. van Frankenhuijsen), Amer. Math. Soc., Providence, RI, 2004, pp. 207-230.
|
[22]
|
N. Steinmetz and P. Volkmann, Funktionalgleichungen für konstante Funktionen, (German) [Functional equations for constant functions], Aequationes Math., 27 (1984), 87-96.
|
[23]
|
G. Strang, Wavelets and dilation equations: A brief introduction, SIAM Rev., 31 (1989), 614-627.
|