-
Previous Article
Some regularity results for a singular elliptic problem
- PROC Home
- This Issue
-
Next Article
Optimal control in a free boundary fluid-elasticity interaction
Analysis of the archetypal functional equation in the non-critical case
1. | Department of Statistics, School of Mathematics, University of Leeds, Leeds, LS2 9JT, United Kingdom |
2. | Department of Mathematics, Ben-Gurion University of the Negev, Be'er Sheva 84105, Israel |
3. | Department of Mathematics, University of North Carolina at Charlotte, Charlotte, NC 28223, United States |
References:
show all references
References:
[1] |
Daria Bugajewska, Mirosława Zima. On the spectral radius of linearly bounded operators and existence results for functional-differential equations. Conference Publications, 2003, 2003 (Special) : 147-155. doi: 10.3934/proc.2003.2003.147 |
[2] |
Daoyi Xu, Yumei Huang, Zhiguo Yang. Existence theorems for periodic Markov process and stochastic functional differential equations. Discrete and Continuous Dynamical Systems, 2009, 24 (3) : 1005-1023. doi: 10.3934/dcds.2009.24.1005 |
[3] |
Tomás Caraballo, Gábor Kiss. Attractivity for neutral functional differential equations. Discrete and Continuous Dynamical Systems - B, 2013, 18 (7) : 1793-1804. doi: 10.3934/dcdsb.2013.18.1793 |
[4] |
Vitalii G. Kurbatov, Valentina I. Kuznetsova. On stability of functional differential equations with rapidly oscillating coefficients. Communications on Pure and Applied Analysis, 2018, 17 (1) : 267-283. doi: 10.3934/cpaa.2018016 |
[5] |
Yongqiang Suo, Chenggui Yuan. Large deviations for neutral stochastic functional differential equations. Communications on Pure and Applied Analysis, 2020, 19 (4) : 2369-2384. doi: 10.3934/cpaa.2020103 |
[6] |
Olesya V. Solonukha. On nonlinear and quasiliniear elliptic functional differential equations. Discrete and Continuous Dynamical Systems - S, 2016, 9 (3) : 869-893. doi: 10.3934/dcdss.2016033 |
[7] |
Pierluigi Benevieri, Alessandro Calamai, Massimo Furi, Maria Patrizia Pera. On general properties of retarded functional differential equations on manifolds. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 27-46. doi: 10.3934/dcds.2013.33.27 |
[8] |
John A. D. Appleby, Denis D. Patterson. Subexponential growth rates in functional differential equations. Conference Publications, 2015, 2015 (special) : 56-65. doi: 10.3934/proc.2015.0056 |
[9] |
Nguyen Thieu Huy, Ngo Quy Dang. Dichotomy and periodic solutions to partial functional differential equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (8) : 3127-3144. doi: 10.3934/dcdsb.2017167 |
[10] |
Olivier Hénot. On polynomial forms of nonlinear functional differential equations. Journal of Computational Dynamics, 2021, 8 (3) : 309-323. doi: 10.3934/jcd.2021013 |
[11] |
Dariusz Idczak. A global implicit function theorem and its applications to functional equations. Discrete and Continuous Dynamical Systems - B, 2014, 19 (8) : 2549-2556. doi: 10.3934/dcdsb.2014.19.2549 |
[12] |
Jun Zhou, Jun Shen. Positive solutions of iterative functional differential equations and application to mixed-type functional differential equations. Discrete and Continuous Dynamical Systems - B, 2022, 27 (7) : 3605-3624. doi: 10.3934/dcdsb.2021198 |
[13] |
Chunhong Li, Jiaowan Luo. Stochastic invariance for neutral functional differential equation with non-lipschitz coefficients. Discrete and Continuous Dynamical Systems - B, 2019, 24 (7) : 3299-3318. doi: 10.3934/dcdsb.2018321 |
[14] |
Defei Zhang, Ping He. Functional solution about stochastic differential equation driven by $G$-Brownian motion. Discrete and Continuous Dynamical Systems - B, 2015, 20 (1) : 281-293. doi: 10.3934/dcdsb.2015.20.281 |
[15] |
Burcu Gürbüz. A computational approximation for the solution of retarded functional differential equations and their applications to science and engineering. Journal of Industrial and Management Optimization, 2021 doi: 10.3934/jimo.2021069 |
[16] |
Pietro-Luciano Buono, V.G. LeBlanc. Equivariant versal unfoldings for linear retarded functional differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 283-302. doi: 10.3934/dcds.2005.12.283 |
[17] |
Ovide Arino, Eva Sánchez. A saddle point theorem for functional state-dependent delay differential equations. Discrete and Continuous Dynamical Systems, 2005, 12 (4) : 687-722. doi: 10.3934/dcds.2005.12.687 |
[18] |
Kai Liu. On regularity of stochastic convolutions of functional linear differential equations with memory. Discrete and Continuous Dynamical Systems - B, 2020, 25 (4) : 1279-1298. doi: 10.3934/dcdsb.2019220 |
[19] |
Nguyen Minh Man, Nguyen Van Minh. On the existence of quasi periodic and almost periodic solutions of neutral functional differential equations. Communications on Pure and Applied Analysis, 2004, 3 (2) : 291-300. doi: 10.3934/cpaa.2004.3.291 |
[20] |
R.S. Dahiya, A. Zafer. Oscillatory theorems of n-th order functional differential equations. Conference Publications, 2001, 2001 (Special) : 435-443. doi: 10.3934/proc.2001.2001.435 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]