2015, 2015(special): 142-150. doi: 10.3934/proc.2015.0142

Some regularity results for a singular elliptic problem

1. 

LMAP-UMR 5142, Bâtiment IPRA, Avenue de l'Université - BP 1155 64013 Pau Cedex, France, France

2. 

Departamento de Matemáticas, Universidad Autónoma de Madrid, 28049 Madrid, Spain

Received  September 2014 Revised  February 2015 Published  November 2015

In the present paper we investigate the following singular elliptic problem with $p$-Laplacian operator: \begin{equation*} (P)\qquad \left \{ \begin{array}{l} -\Delta_p u = \frac{K(x)}{ u^{\alpha}}\quad \text{ in } \Omega \\ u = 0\ \text{ on } \partial\Omega,\ u>0 \text{ on } \Omega, \end{array} \right . \end{equation*} where $\Omega$ is a regular bounded domain of $\mathbb R^{N}$, $\alpha\in\mathbb R$, $K\in L^\infty_{\rm loc}(\Omega)$ a non-negative function. We discuss below the existence, the regularity and the uniqueness of a weak solution $u$ to the problem (P).
Citation: Brahim Bougherara, Jacques Giacomoni, Jesus Hernández. Some regularity results for a singular elliptic problem. Conference Publications, 2015, 2015 (special) : 142-150. doi: 10.3934/proc.2015.0142
References:
[1]

L. Bougherara, J. Giacomoni and J. Hernández, Existence and regularity of weak solutions for singular semilinear elliptic problems,, Preprint 2014., (2014). Google Scholar

[2]

M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular nonlinearity,, Comm. Partial Differential Equations, 2 (1977), 193. Google Scholar

[3]

M. Del Pino, A global estimate for the gradient in a singular elliptic boundary value problem,, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 341. Google Scholar

[4]

J. I. Díaz, J. Hernández and J. M. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms,, Milan J. Math., 79 (2011), 233. Google Scholar

[5]

J. I. Díaz and J. M. Rakotoson, On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary,, J. Funct. Anal., 257 (2009), 807. Google Scholar

[6]

J. I. Díaz and J. E. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires., C. R. Acad. Sci. Paris Sér. I Math., 305 (1988), 321. Google Scholar

[7]

J. Giacomoni, H. Maagli and P. Sauvy, Existence of compact support solutions for a quasilinear and singular problem,, Differential Integral Equations, 25 (2012), 7. Google Scholar

[8]

J. Giacomoni, I. Schindler and P. Takáč, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6 (2007), 117. Google Scholar

[9]

J. Giacomoni, I. Schindler and P. Takáč, $C^{0,\beta}$-regularity and singular quasilinear elliptic equations,, C. R. Math. Acad. Sci. Paris, 350 (2012), 7. Google Scholar

[10]

S. M. Gomes, On a singular nonlinear elliptic problem,, SIAM J. Math. Anal., 17 (1986), 1359. Google Scholar

[11]

C. Gui and F. H. Lin, Regularity of an elliptic problem with a singular nonlinearity,, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 1021. Google Scholar

[12]

J. Hernández, F. Mancebo and J. M. Vega, Positive solutions for singular nonlinear elliptic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 41. Google Scholar

[13]

A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem,, Proc. Amer. Math. Soc., 111 (1991), 721. Google Scholar

[14]

G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations., Nonlinear Analysis, 12 (1988), 1203. Google Scholar

[15]

P. Lindqvist, On the equation div $(|\nabla u|^{p-2}\nabla u)+\lambda|u|^{p-2}u=0$,, Proc. Amer. Math. Soc., 109 (1990), 157. Google Scholar

[16]

J. Serrin, Local behavior of solutions of quasi-linear equations., Acta Math., 111 (1964), 247. Google Scholar

[17]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Differential Equations, 51 (1984), 126. Google Scholar

[18]

J.L. Vázquez, A strong maximum principle for some quasilinear equations,, Appl. Math. Opt., 12 (1984), 1992. Google Scholar

[19]

Z. Zhang and J. Cheng, Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems,, Nonlinear Anal., 57 (2004), 473. Google Scholar

show all references

References:
[1]

L. Bougherara, J. Giacomoni and J. Hernández, Existence and regularity of weak solutions for singular semilinear elliptic problems,, Preprint 2014., (2014). Google Scholar

[2]

M. G. Crandall, P. H. Rabinowitz, and L. Tartar, On a Dirichlet problem with a singular nonlinearity,, Comm. Partial Differential Equations, 2 (1977), 193. Google Scholar

[3]

M. Del Pino, A global estimate for the gradient in a singular elliptic boundary value problem,, Proc. Roy. Soc. Edinburgh Sect. A, 122 (1992), 341. Google Scholar

[4]

J. I. Díaz, J. Hernández and J. M. Rakotoson, On very weak positive solutions to some semilinear elliptic problems with simultaneous singular nonlinear and spatial dependence terms,, Milan J. Math., 79 (2011), 233. Google Scholar

[5]

J. I. Díaz and J. M. Rakotoson, On the differentiability of very weak solutions with right-hand side data integrable with respect to the distance to the boundary,, J. Funct. Anal., 257 (2009), 807. Google Scholar

[6]

J. I. Díaz and J. E. Saá, Existence et unicité de solutions positives pour certaines équations elliptiques quasilinéaires., C. R. Acad. Sci. Paris Sér. I Math., 305 (1988), 321. Google Scholar

[7]

J. Giacomoni, H. Maagli and P. Sauvy, Existence of compact support solutions for a quasilinear and singular problem,, Differential Integral Equations, 25 (2012), 7. Google Scholar

[8]

J. Giacomoni, I. Schindler and P. Takáč, Sobolev versus Hölder local minimizers and existence of multiple solutions for a singular quasilinear equation,, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 6 (2007), 117. Google Scholar

[9]

J. Giacomoni, I. Schindler and P. Takáč, $C^{0,\beta}$-regularity and singular quasilinear elliptic equations,, C. R. Math. Acad. Sci. Paris, 350 (2012), 7. Google Scholar

[10]

S. M. Gomes, On a singular nonlinear elliptic problem,, SIAM J. Math. Anal., 17 (1986), 1359. Google Scholar

[11]

C. Gui and F. H. Lin, Regularity of an elliptic problem with a singular nonlinearity,, Proc. Roy. Soc. Edinburgh Sect. A, 123 (1993), 1021. Google Scholar

[12]

J. Hernández, F. Mancebo and J. M. Vega, Positive solutions for singular nonlinear elliptic equations,, Proc. Roy. Soc. Edinburgh Sect. A, 137 (2007), 41. Google Scholar

[13]

A. C. Lazer and P. J. McKenna, On a singular nonlinear elliptic boundary-value problem,, Proc. Amer. Math. Soc., 111 (1991), 721. Google Scholar

[14]

G. Lieberman, Boundary regularity for solutions of degenerate elliptic equations., Nonlinear Analysis, 12 (1988), 1203. Google Scholar

[15]

P. Lindqvist, On the equation div $(|\nabla u|^{p-2}\nabla u)+\lambda|u|^{p-2}u=0$,, Proc. Amer. Math. Soc., 109 (1990), 157. Google Scholar

[16]

J. Serrin, Local behavior of solutions of quasi-linear equations., Acta Math., 111 (1964), 247. Google Scholar

[17]

P. Tolksdorf, Regularity for a more general class of quasilinear elliptic equations,, J. Differential Equations, 51 (1984), 126. Google Scholar

[18]

J.L. Vázquez, A strong maximum principle for some quasilinear equations,, Appl. Math. Opt., 12 (1984), 1992. Google Scholar

[19]

Z. Zhang and J. Cheng, Existence and optimal estimates of solutions for singular nonlinear Dirichlet problems,, Nonlinear Anal., 57 (2004), 473. Google Scholar

[1]

Boumediene Abdellaoui, Ahmed Attar. Quasilinear elliptic problem with Hardy potential and singular term. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1363-1380. doi: 10.3934/cpaa.2013.12.1363

[2]

Zongming Guo, Xuefei Bai. On the global branch of positive radial solutions of an elliptic problem with singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1091-1107. doi: 10.3934/cpaa.2008.7.1091

[3]

Baishun Lai, Qing Luo. Regularity of the extremal solution for a fourth-order elliptic problem with singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 227-241. doi: 10.3934/dcds.2011.30.227

[4]

Zongming Guo, Juncheng Wei. Asymptotic behavior of touch-down solutions and global bifurcations for an elliptic problem with a singular nonlinearity. Communications on Pure & Applied Analysis, 2008, 7 (4) : 765-786. doi: 10.3934/cpaa.2008.7.765

[5]

Zongming Guo, Long Wei. A fourth order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2493-2508. doi: 10.3934/cpaa.2014.13.2493

[6]

Fouad Hadj Selem, Hiroaki Kikuchi, Juncheng Wei. Existence and uniqueness of singular solution to stationary Schrödinger equation with supercritical nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (10) : 4613-4626. doi: 10.3934/dcds.2013.33.4613

[7]

Giuseppe Maria Coclite, Mario Michele Coclite. On a Dirichlet problem in bounded domains with singular nonlinearity. Discrete & Continuous Dynamical Systems - A, 2013, 33 (11&12) : 4923-4944. doi: 10.3934/dcds.2013.33.4923

[8]

Galina V. Grishina. On positive solution to a second order elliptic equation with a singular nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (5) : 1335-1343. doi: 10.3934/cpaa.2010.9.1335

[9]

Zongming Guo, Zhongyuan Liu, Juncheng Wei, Feng Zhou. Bifurcations of some elliptic problems with a singular nonlinearity via Morse index. Communications on Pure & Applied Analysis, 2011, 10 (2) : 507-525. doi: 10.3934/cpaa.2011.10.507

[10]

Zongming Guo, Yunting Yu. Boundary value problems for a semilinear elliptic equation with singular nonlinearity. Communications on Pure & Applied Analysis, 2016, 15 (2) : 399-412. doi: 10.3934/cpaa.2016.15.399

[11]

Kazuaki Taira. The hypoelliptic Robin problem for quasilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 1-18. doi: 10.3934/dcdss.2020091

[12]

Miao Chen, Youyan Wan, Chang-Lin Xiang. Local uniqueness problem for a nonlinear elliptic equation. Communications on Pure & Applied Analysis, 2020, 19 (2) : 1037-1055. doi: 10.3934/cpaa.2020048

[13]

Futoshi Takahashi. Singular extremal solutions to a Liouville-Gelfand type problem with exponential nonlinearity. Conference Publications, 2015, 2015 (special) : 1025-1033. doi: 10.3934/proc.2015.1025

[14]

Luiz F. O. Faria. Existence and uniqueness of positive solutions for singular biharmonic elliptic systems. Conference Publications, 2015, 2015 (special) : 400-408. doi: 10.3934/proc.2015.0400

[15]

Yen-Lin Wu, Zhi-You Chen, Jann-Long Chern, Y. Kabeya. Existence and uniqueness of singular solutions for elliptic equation on the hyperbolic space. Communications on Pure & Applied Analysis, 2014, 13 (2) : 949-960. doi: 10.3934/cpaa.2014.13.949

[16]

M. Chuaqui, C. Cortázar, M. Elgueta, J. García-Melián. Uniqueness and boundary behavior of large solutions to elliptic problems with singular weights. Communications on Pure & Applied Analysis, 2004, 3 (4) : 653-662. doi: 10.3934/cpaa.2004.3.653

[17]

Tomasz Cieślak, Kentarou Fujie. Global existence in the 1D quasilinear parabolic-elliptic chemotaxis system with critical nonlinearity. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 165-176. doi: 10.3934/dcdss.2020009

[18]

Liping Wang. Arbitrarily many solutions for an elliptic Neumann problem with sub- or supercritical nonlinearity. Communications on Pure & Applied Analysis, 2010, 9 (3) : 761-778. doi: 10.3934/cpaa.2010.9.761

[19]

Marcos L. M. Carvalho, José Valdo A. Goncalves, Claudiney Goulart, Olímpio H. Miyagaki. Multiplicity of solutions for a nonhomogeneous quasilinear elliptic problem with critical growth. Communications on Pure & Applied Analysis, 2019, 18 (1) : 83-106. doi: 10.3934/cpaa.2019006

[20]

Mamadou Sango. Homogenization of the Neumann problem for a quasilinear elliptic equation in a perforated domain. Networks & Heterogeneous Media, 2010, 5 (2) : 361-384. doi: 10.3934/nhm.2010.5.361

 Impact Factor: 

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (0)

[Back to Top]