2015, 2015(special): 151-158. doi: 10.3934/proc.2015.0151

Classical and nonclassical symmetries and exact solutions for a generalized Benjamin equation

1. 

Departamento de Matemáticas, Universidad de Cádiz, PO.BOX 40, 11510 Puerto Real, Cádiz, Spain, Spain, Spain

Received  September 2014 Revised  December 2014 Published  November 2015

We apply the Lie-group formalism to deduce symmetries of a generalized Benjamin equation. We make an analysis of the symmetry reductions of the equation. In order to obtain travelling wave solutions we apply an indirect F-function method. We obtained in an unified way simultaneously many periodic wave solutions expressed by various single and combined nondegenerative Jacobi elliptic function solutions and their degenerative solutions. We compare these solutions with the solutions derived by other authors by using different methods and we observe that we have obtained new solutions for this equation.
Citation: M. S. Bruzón, M. L. Gandarias, J. C. Camacho. Classical and nonclassical symmetries and exact solutions for a generalized Benjamin equation. Conference Publications, 2015, 2015 (special) : 151-158. doi: 10.3934/proc.2015.0151
References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, Dover, (1972).   Google Scholar

[2]

F. M. Belgacem, H. Bulut, H. M. Baskonus and T. Akturk, Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method,, J. Assoc. of Arab Univ. Basic and Appl. Sc., (2013).   Google Scholar

[3]

G. W. Bluman and J. Cole, The General Similarity Solution of the Heat Equation,, Phys. J. Math. Mech. 18 (1969) 1025-1042., 18 (1969), 1025.   Google Scholar

[4]

P. A. Clarkson, Nonclassical Symmetry Reductions of the Boussinesq Equation., Chaos, 5 (1995), 2261.   Google Scholar

[5]

P. A. Clarkson and E. L. Mansfield, Algorithms for the nonclassical method of symmetry reductions., SIAM J. Appl. Math., 55 (1994), 1693.   Google Scholar

[6]

P. A. Clarkson and T. J. Priestley, Symmetries of a Generalised Boussinesq equation., Electronic Edition, (1996).   Google Scholar

[7]

M.L. Gandarias and M.S. Bruzón, Classical and Nonclassical Symmetries of a Generalized Boussinesq Equation,, J. Nonlin. Math. Phys. 5 (1998) 8-12., 5 (1998), 8.   Google Scholar

[8]

W. Hereman, P. P. Banerjee, A. Korpel, G. Assanto, A. Van Immerzeele and A. Meerpole, Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method,, J. Phys. A. Math. Gen., 19 (1986), 607.   Google Scholar

[9]

N. H. Ibragimov, Transformation groups applied to mathematical physics,, Reidel-Dordrecht, (1985).   Google Scholar

[10]

P. Olver, Applications of Lie groups to differential equations,, Springer-Verlag, (1993).   Google Scholar

[11]

L. V. Ovsyannikov, Group analysis of differential equations,, Academic, (1982).   Google Scholar

[12]

N. Taghizadeh, M. Mirzazadeh and S. R. Moosavi Noori, Exact Solutions of the Generalized Benjamin Equation and (3 + 1)- Dimensional Gkp Equation by the Extended Tanh Method,, Appl. Appl. Math., 7 (2012), 175.   Google Scholar

show all references

References:
[1]

M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions,, Dover, (1972).   Google Scholar

[2]

F. M. Belgacem, H. Bulut, H. M. Baskonus and T. Akturk, Mathematical analysis of the Generalized Benjamin and Burger-Kdv Equations via the Extended Trial Equation Method,, J. Assoc. of Arab Univ. Basic and Appl. Sc., (2013).   Google Scholar

[3]

G. W. Bluman and J. Cole, The General Similarity Solution of the Heat Equation,, Phys. J. Math. Mech. 18 (1969) 1025-1042., 18 (1969), 1025.   Google Scholar

[4]

P. A. Clarkson, Nonclassical Symmetry Reductions of the Boussinesq Equation., Chaos, 5 (1995), 2261.   Google Scholar

[5]

P. A. Clarkson and E. L. Mansfield, Algorithms for the nonclassical method of symmetry reductions., SIAM J. Appl. Math., 55 (1994), 1693.   Google Scholar

[6]

P. A. Clarkson and T. J. Priestley, Symmetries of a Generalised Boussinesq equation., Electronic Edition, (1996).   Google Scholar

[7]

M.L. Gandarias and M.S. Bruzón, Classical and Nonclassical Symmetries of a Generalized Boussinesq Equation,, J. Nonlin. Math. Phys. 5 (1998) 8-12., 5 (1998), 8.   Google Scholar

[8]

W. Hereman, P. P. Banerjee, A. Korpel, G. Assanto, A. Van Immerzeele and A. Meerpole, Exact solitary wave solutions of nonlinear evolution and wave equations using a direct algebraic method,, J. Phys. A. Math. Gen., 19 (1986), 607.   Google Scholar

[9]

N. H. Ibragimov, Transformation groups applied to mathematical physics,, Reidel-Dordrecht, (1985).   Google Scholar

[10]

P. Olver, Applications of Lie groups to differential equations,, Springer-Verlag, (1993).   Google Scholar

[11]

L. V. Ovsyannikov, Group analysis of differential equations,, Academic, (1982).   Google Scholar

[12]

N. Taghizadeh, M. Mirzazadeh and S. R. Moosavi Noori, Exact Solutions of the Generalized Benjamin Equation and (3 + 1)- Dimensional Gkp Equation by the Extended Tanh Method,, Appl. Appl. Math., 7 (2012), 175.   Google Scholar

[1]

Yi-Long Luo, Yangjun Ma. Low Mach number limit for the compressible inertial Qian-Sheng model of liquid crystals: Convergence for classical solutions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 921-966. doi: 10.3934/dcds.2020304

[2]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[3]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[4]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[5]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[6]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[7]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[8]

Craig Cowan, Abdolrahman Razani. Singular solutions of a Lane-Emden system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 621-656. doi: 10.3934/dcds.2020291

[9]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[10]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[11]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[12]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[13]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[14]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[15]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[16]

Teresa D'Aprile. Bubbling solutions for the Liouville equation around a quantized singularity in symmetric domains. Communications on Pure & Applied Analysis, 2021, 20 (1) : 159-191. doi: 10.3934/cpaa.2020262

[17]

Martin Kalousek, Joshua Kortum, Anja Schlömerkemper. Mathematical analysis of weak and strong solutions to an evolutionary model for magnetoviscoelasticity. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 17-39. doi: 10.3934/dcdss.2020331

[18]

Helmut Abels, Johannes Kampmann. Existence of weak solutions for a sharp interface model for phase separation on biological membranes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 331-351. doi: 10.3934/dcdss.2020325

[19]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[20]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

 Impact Factor: 

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]