\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Stochastic control of individual's health investments

Abstract Related Papers Cited by
  • Grossman's health investment model has been one of the most important developments in health economics. However, the model's derived demand function for medical care predicts the demand for medical care to increase if the individual's health status increases. Yet, empirical studies indicate the opposite relationship. Therefore, this study improves the informative value of the health investment model by introducing a reworked Grossman model, which assumes a more realistic Cobb-Douglas health investment function with decreasing returns to scale. Because we introduced uncertainty surrounding individual's health status the resulting dynamic utility maximization problem is tackled by optimal stochastic control theory.
    Mathematics Subject Classification: Primary: 93E20; Secondary: 92C50.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    M. Grossman, The demand for health: a theoretical and empirical investigation, National Bureau of Economic Research, Cambridge, 1972.

    [2]

    M. Grossman, The human capital model, in Handbook of health economics (eds. A. J. Culyer and J. P. Newhouse) Elsevier Science, Amsterdam, (2000), 347408.

    [3]

    P. Zweifel, The Grossman model after 40 years, Eur. J. Health Econ., 13 (2012), 677-682.

    [4]

    U. G. Gerdtham, M. Johannesson, L. Lundberg and D. G. L. Isacson, The demand for health: results from new measures of health capital, Eur. J. Health Econ., 15 (1999), 501-521.

    [5]

    A. Wagstaff , The demand for health: Some new empirical evidence, J. Health Econ., 53 (1986), 195-233.

    [6]

    M. Erbsland, W. Ried and V. Ulrich, Health, health care, and the environment: Econometric evidence from German micro data, Health Econ., 4 (1995), 169-182.

    [7]

    I. Ehrlich and H. Chuma, A Model of the Demand for Longevity and the Value of Life Extension, J. Pol. Econ., 98 (1990), 761-782.

    [8]

    R. Kaestner, The Grossman model after 40 years: A reply to Peter Zweifel, Eur. J. Health Econ., 14 (2013), 357-360.

    [9]

    T. J. Galama, P. Hullegie, E. Meijer and S. Outcault, Is there empirical evidence for decreasing returns to scale in a health capital model?, Health Econ., 21 (2012), 1080-1100.

    [10]

    A. Laporte, Should the Grossman model retain its iconic status in health economics?, CCHE/CCES Working paper, 2014.

    [11]

    V. Dardanoni and A. Wagstaff, Uncertainty, inequalities in health and the demand for health , J. Health Econ., 6 (1987), 283-290.

    [12]

    G. Picone, M. Uribe, R. M. Wilson, The effect of uncertainty on the demand for medical care, health capital and wealth, J. Health Econ., 17 (1998), 171-185.

    [13]

    L. S. Pontryagin, W. Boltjanski, R. V. Gamkrelidze and E. F. Mishchenko, Mathematische Theorie optimaler Prozesse, (German) [Mathematical Theory of Optimal Processes], $2^{nd}$ edition, Oldenburg-Verlag, Muenchen, 1967.

    [14]

    A. A. Leibowitz, The demand for health and health concerns after 30 years, J. Health Econ., 23 (2004), 663-671.

    [15]

    A. N. Kolmogorov, Grundbegriffe der Wahrscheinlichkeitsrechnung, (German) [Foundations of the theory of probablity], $2^{nd}$ edition, Oldenburg-Verlag, Muenchen, 1967.

    [16]

    A. G. Malliaris and W. A. Brock, Stochastic methods in economics and finance, Elsevier/North-Holland, New York, 1982.

    [17]

    J. M. Bismut , Conjugate convex functions in optimal stochastic control, J. Math. Anal. Appl., 44 (1973), 384-404.

    [18]

    W. Ried, Comparative dynamic analysis of the full Grossman model, J. Health Econ., 17 (1998), 383-425.

    [19]

    M. Kuhn, S. Wrzaczek, A. Prskawetz, G. Feichtinger, Externalities in a Life-Cycle Model with Endogenous Survival, J. Math. Econ., 47 (2011), 627-641.

    [20]

    M. E. Yaari, Uncertain lifetime, life insurance, and the theory of the consumer, Rev. Econ. Stud., 32 (1965), 137-150.

    [21]

    W. H. Fleming, R. W. Rishel, Deterministic and stochstic optimal control, Springer, New York, 1975.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(267) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return