2015, 2015(special): 169-175. doi: 10.3934/proc.2015.0169

Matter-wave solitons with a minimal number of particles in a time-modulated quasi-periodic potential

1. 

CIICAp, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mor., México, CP 62209, Mexico, Mexico

Received  September 2014 Revised  February 2015 Published  November 2015

The two-dimensional (2D) matter-wave soliton families supported by an external potential are systematically studied, in a vicinity of the junction between stable and unstable branches of the families. In this case the norm of the solution attains a minimum, facilitating the creation of such excitation. We study the dynamics and stability boundaries for fundamental solitons in a 2D self-attracting Bose-Einstein condensate (BEC), trapped in an quasiperiodic optical lattice (OL), with the amplitude subject to periodic time modulation.
Citation: Gennadiy Burlak, Salomon García-Paredes. Matter-wave solitons with a minimal number of particles in a time-modulated quasi-periodic potential. Conference Publications, 2015, 2015 (special) : 169-175. doi: 10.3934/proc.2015.0169
References:
[1]

B. A. Malomed, Soliton Management in Periodic Systems, (Springer: New York, (2006). Google Scholar

[2]

A. Gaunt, R. Fletcher, R. Smith and Z. Hadzibabic, A superheated Bose-condensed gas,, Nature Physics, 9 (2013). Google Scholar

[3]

G. Burlak and B. A. Malomed, Dynamics of matter-wave solitons in a time-modulated two-dimensional optical lattice,, Phys. Rev. A, 77 (2008). Google Scholar

[4]

B. B. Baizakov, B. A. Malomed, and M. Salerno, Europhys. Lett., 63, 642 (2003); J. Yang and Z. H. Musslimani, Opt. Lett., 28, 2094 (2003); Z. H. Musslimani, and J. Yang,, J. Opt. Soc. Am. B, 21 (2004). Google Scholar

[5]

B. B. Baizakov, B. A. Malomed and M. Salerno, Phys. Rev. A, 70, 053613 (2004); Eur. Phys. J. D, 38, 367 (2006); T. Mayteevarunyoo, B. A. Malomed, B. B. Baizakov, and M. Salerno,, Physica D, 238 (2009). Google Scholar

[6]

H. Sakaguchi and B. A. Malomed, Gap solitons in quasiperiodic optical lattices,, Phys. Rev. E, 74 (2006). Google Scholar

[7]

N. G. Vakhitov, A. A. Kolokolov and Izv. Vys. Uch. Zaved., Radiofizika, 16, 1020 (1973) [in Russian; English translation:, Radiophys. Quant. Electr., 16 (1975). Google Scholar

[8]

G. Kalosakas, K. . Rasmussen and A. R. Bishop, Delocalizing Transition of Bose-Einstein Condensates in Optical Lattices,, Phys. Rev. Lett., 89 (0304). Google Scholar

[9]

B. B. Baizakov, B. A. Malomed and M. Salerno, in: Nonlinear Waves: Classical and Quantum Aspects, ed. by F. Kh. Abdullaev and V. V. Konotop, pp. 61-80 (Kluwer Academic Publishers: Dordrecht, 2004); also, available at: , (). Google Scholar

[10]

B. B. Baizakov, B. A. Malomed and M. Salerno, in: Nonlinear Waves: Classical and Quantum Aspects,, ed. by F. Kh. Abdullaev, (2004). Google Scholar

[11]

G. Burlak and A. Klimov, The solitons redistribution in Bose-Einstein condensate in quasiperiodic optical lattice,, Phys. Lett. A, 369 (2007). Google Scholar

[12]

F. Dalfovo, S. Giorgini, and L. P. Pitaevskii, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999). Google Scholar

[13]

B. A. Malomed, D. Mihalache, F. Wise and L. Torner, J. Spatiotemporal optical solitons,, Optics B: Quant. Semics. Opt., 7 (2005). Google Scholar

[14]

Y. V. Kartashov, B. A. Malomed and L. Torner, Solitons in nonlinear lattices,, Rev. Mod. Phys., 83 (2011). Google Scholar

[15]

J. Yang and T. I. Lakoba, Accelerated imaginary-time evolution methods for the computation of solitary waves,, Stud. Appl. Math. 120, (2008). Google Scholar

[16]

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics,, Phys. Rep. 463, (2008). Google Scholar

[17]

J. Yang, Nonlinear waves in integrable and nonintegrable systems., (SIAM-USA, (2010). Google Scholar

[18]

G. Burlak, B. A. Malomed, Matter-wave solitons with a minimal number of particles in two-dimensional quasiperiodic potentials., Phys. Rev. E, 85 (2012), 57601. Google Scholar

show all references

References:
[1]

B. A. Malomed, Soliton Management in Periodic Systems, (Springer: New York, (2006). Google Scholar

[2]

A. Gaunt, R. Fletcher, R. Smith and Z. Hadzibabic, A superheated Bose-condensed gas,, Nature Physics, 9 (2013). Google Scholar

[3]

G. Burlak and B. A. Malomed, Dynamics of matter-wave solitons in a time-modulated two-dimensional optical lattice,, Phys. Rev. A, 77 (2008). Google Scholar

[4]

B. B. Baizakov, B. A. Malomed, and M. Salerno, Europhys. Lett., 63, 642 (2003); J. Yang and Z. H. Musslimani, Opt. Lett., 28, 2094 (2003); Z. H. Musslimani, and J. Yang,, J. Opt. Soc. Am. B, 21 (2004). Google Scholar

[5]

B. B. Baizakov, B. A. Malomed and M. Salerno, Phys. Rev. A, 70, 053613 (2004); Eur. Phys. J. D, 38, 367 (2006); T. Mayteevarunyoo, B. A. Malomed, B. B. Baizakov, and M. Salerno,, Physica D, 238 (2009). Google Scholar

[6]

H. Sakaguchi and B. A. Malomed, Gap solitons in quasiperiodic optical lattices,, Phys. Rev. E, 74 (2006). Google Scholar

[7]

N. G. Vakhitov, A. A. Kolokolov and Izv. Vys. Uch. Zaved., Radiofizika, 16, 1020 (1973) [in Russian; English translation:, Radiophys. Quant. Electr., 16 (1975). Google Scholar

[8]

G. Kalosakas, K. . Rasmussen and A. R. Bishop, Delocalizing Transition of Bose-Einstein Condensates in Optical Lattices,, Phys. Rev. Lett., 89 (0304). Google Scholar

[9]

B. B. Baizakov, B. A. Malomed and M. Salerno, in: Nonlinear Waves: Classical and Quantum Aspects, ed. by F. Kh. Abdullaev and V. V. Konotop, pp. 61-80 (Kluwer Academic Publishers: Dordrecht, 2004); also, available at: , (). Google Scholar

[10]

B. B. Baizakov, B. A. Malomed and M. Salerno, in: Nonlinear Waves: Classical and Quantum Aspects,, ed. by F. Kh. Abdullaev, (2004). Google Scholar

[11]

G. Burlak and A. Klimov, The solitons redistribution in Bose-Einstein condensate in quasiperiodic optical lattice,, Phys. Lett. A, 369 (2007). Google Scholar

[12]

F. Dalfovo, S. Giorgini, and L. P. Pitaevskii, Theory of Bose-Einstein condensation in trapped gases,, Rev. Mod. Phys., 71 (1999). Google Scholar

[13]

B. A. Malomed, D. Mihalache, F. Wise and L. Torner, J. Spatiotemporal optical solitons,, Optics B: Quant. Semics. Opt., 7 (2005). Google Scholar

[14]

Y. V. Kartashov, B. A. Malomed and L. Torner, Solitons in nonlinear lattices,, Rev. Mod. Phys., 83 (2011). Google Scholar

[15]

J. Yang and T. I. Lakoba, Accelerated imaginary-time evolution methods for the computation of solitary waves,, Stud. Appl. Math. 120, (2008). Google Scholar

[16]

F. Lederer, G. I. Stegeman, D. N. Christodoulides, G. Assanto, M. Segev, and Y. Silberberg, Discrete solitons in optics,, Phys. Rep. 463, (2008). Google Scholar

[17]

J. Yang, Nonlinear waves in integrable and nonintegrable systems., (SIAM-USA, (2010). Google Scholar

[18]

G. Burlak, B. A. Malomed, Matter-wave solitons with a minimal number of particles in two-dimensional quasiperiodic potentials., Phys. Rev. E, 85 (2012), 57601. Google Scholar

[1]

Alexander Komech, Elena Kopylova, David Stuart. On asymptotic stability of solitons in a nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2012, 11 (3) : 1063-1079. doi: 10.3934/cpaa.2012.11.1063

[2]

Walid K. Abou Salem, Xiao Liu, Catherine Sulem. Numerical simulation of resonant tunneling of fast solitons for the nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2011, 29 (4) : 1637-1649. doi: 10.3934/dcds.2011.29.1637

[3]

Margaret Beck. Stability of nonlinear waves: Pointwise estimates. Discrete & Continuous Dynamical Systems - S, 2017, 10 (2) : 191-211. doi: 10.3934/dcdss.2017010

[4]

Florian De Vuyst, Francesco Salvarani. Numerical simulations of degenerate transport problems. Kinetic & Related Models, 2014, 7 (3) : 463-476. doi: 10.3934/krm.2014.7.463

[5]

Yaping Wu, Niannian Yan. Stability of traveling waves for autocatalytic reaction systems with strong decay. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1601-1633. doi: 10.3934/dcdsb.2017033

[6]

Zhong Wang. Stability of Hasimoto solitons in energy space for a fourth order nonlinear Schrödinger type equation. Discrete & Continuous Dynamical Systems - A, 2017, 37 (7) : 4091-4108. doi: 10.3934/dcds.2017174

[7]

Emmanuel Trélat. Optimal control of a space shuttle, and numerical simulations. Conference Publications, 2003, 2003 (Special) : 842-851. doi: 10.3934/proc.2003.2003.842

[8]

Yaping Wu, Xiuxia Xing, Qixiao Ye. Stability of travelling waves with algebraic decay for $n$-degree Fisher-type equations. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 47-66. doi: 10.3934/dcds.2006.16.47

[9]

S. Raynor, G. Staffilani. Low regularity stability of solitons for the KDV equation. Communications on Pure & Applied Analysis, 2003, 2 (3) : 277-296. doi: 10.3934/cpaa.2003.2.277

[10]

David M. A. Stuart. Solitons on pseudo-Riemannian manifolds: stability and motion. Electronic Research Announcements, 2000, 6: 75-89.

[11]

Paschalis Karageorgis. Small-data scattering for nonlinear waves with potential and initial data of critical decay. Discrete & Continuous Dynamical Systems - A, 2006, 16 (1) : 87-106. doi: 10.3934/dcds.2006.16.87

[12]

Santosh Bhattarai. Stability of normalized solitary waves for three coupled nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2016, 36 (4) : 1789-1811. doi: 10.3934/dcds.2016.36.1789

[13]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[14]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[15]

Judith R. Miller, Huihui Zeng. Stability of traveling waves for systems of nonlinear integral recursions in spatial population biology. Discrete & Continuous Dynamical Systems - B, 2011, 16 (3) : 895-925. doi: 10.3934/dcdsb.2011.16.895

[16]

Aslihan Demirkaya, Milena Stanislavova. Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 197-209. doi: 10.3934/dcdsb.2018097

[17]

Hirotoshi Kuroda, Noriaki Yamazaki. Approximating problems of vectorial singular diffusion equations with inhomogeneous terms and numerical simulations. Conference Publications, 2009, 2009 (Special) : 486-495. doi: 10.3934/proc.2009.2009.486

[18]

Yuliya Gorb, Dukjin Nam, Alexei Novikov. Numerical simulations of diffusion in cellular flows at high Péclet numbers. Discrete & Continuous Dynamical Systems - B, 2011, 15 (1) : 75-92. doi: 10.3934/dcdsb.2011.15.75

[19]

Carlos Escudero, Fabricio Macià, Raúl Toral, Juan J. L. Velázquez. Kinetic theory and numerical simulations of two-species coagulation. Kinetic & Related Models, 2014, 7 (2) : 253-290. doi: 10.3934/krm.2014.7.253

[20]

Martin Burger, Peter Alexander Markowich, Jan-Frederik Pietschmann. Continuous limit of a crowd motion and herding model: Analysis and numerical simulations. Kinetic & Related Models, 2011, 4 (4) : 1025-1047. doi: 10.3934/krm.2011.4.1025

 Impact Factor: 

Metrics

  • PDF downloads (12)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]