[1]
|
M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, New York: Dover, 1972.
|
[2]
|
G. W. Bluman and J. D. Cole, The general similarity solution of the heat equation, J. Math. Mech., 18 (1969), 1025-1042.
|
[3]
|
J.M. Ball, Initial boundary value problems for an extensible beam, J. Math. Analysis Appl., 42 (1973), 61-90.
|
[4]
|
G. W. Bluman and S. Kumei, Symmetries and differential equations, Springer-Verlag, 1989.
|
[5]
|
E. Burgreen, Free vibrations of a pinended column with constant distance between pinendes, J. Appl. Mech, 18 (1951), 135-139.
|
[6]
|
B. Champagne, W. Hereman, and P. Winternitz, The computer calculation of Lie point symmetries of large systems of differential equations, Com. Phys. Comm., 66 (1991), 319-340.
|
[7]
|
R. W. Dickey, Free vibrations and dynamics buckling of extensible beam, J. Math. Analysis Appl. 29 (1970).
|
[8]
|
P. A. Djondjorov, Invariant properties of timoshenko beam equations, International Journal of Engineering Science, 33 (1995), 2103-2114.
|
[9]
|
J. G. Eisley, Nonlinear vibrations of beams and rectangular plates, Z. angew. Math. Phys., 15 (1964).
|
[10]
|
J. Ferreira, R. Benabidallah, and J. E. Mu{\ n}oz Rivera, Asymptotic behaviour for the nonlinear beam equation in a time-dependent domain, Rendiconti di Matematica, Serie VII, 19 (1999), 177-193.
|
[11]
|
L. A. Medeiros, On a new class of nonlinear wave equations, J. Math. Appl., 69 (1979), 252-262.
|
[12]
|
G. P. Menzala, On classical solutions of a quasilinear hyperbolic equation, Nonlinear Analysis, 3 (1978), 613-627.
|
[13]
|
D. C. Pereira, Existence, uniqueness and asymptotic behaviour for solutions of the nonlinear beam equation, Nonlinear Analysis, 14(8) (1990), 613-623.
|
[14]
|
O. C. Ramos, Regularity property for the nonlinear beam operator, An. Acad. Bras. Ci., 61(1) (1989), 15-24.
|
[15]
|
J. E. M. Rivera, Smoothness effect and decay on a class of non linear evolution equation, Ann. Fac. Sc. Toulouse, I(20) (1992), 237-260.
|
[16]
|
P. J. Olver, Applications of Lie groups to differential equations, Springer-Verlag, 1986.
|
[17]
|
S. K. Woinowsky, The effect of axial force on the vibration of hinged bars, Appl. Mech., 17 (1950), 35-36.
|