2015, 2015(special): 195-203. doi: 10.3934/proc.2015.0195

Stochastic modeling of the firing activity of coupled neurons periodically driven

1. 

Istituto per le Applicazioni del Calcolo CNR, Napoli, Italy

2. 

Dipartimento di Matematica e Applicazioni, Università di Napoli Federico II, Via Cintia, Napoli

Received  September 2014 Revised  November 2014 Published  November 2015

A stochastic model for describing the firing activity of a couple of interacting neurons subject to time-dependent stimuli is proposed. Two stochastic differential equations suitably coupled and including periodic terms to represent stimuli imposed to one or both neurons are considered to describe the problem. We investigate the first passage time densities through specified firing thresholds for the involved time non-homogeneous Gauss-Markov processes. We provide simulation results and numerical approximations of the firing densities. Asymptotic behaviors of the first passage times are also given.
Citation: Maria Francesca Carfora, Enrica Pirozzi. Stochastic modeling of the firing activity of coupled neurons periodically driven. Conference Publications, 2015, 2015 (special) : 195-203. doi: 10.3934/proc.2015.0195
References:
[1]

K. Amemori and S. Ishii, Gaussian Process Approach to Spiking Neurons for Inhomogeneous Poisson Inputs., Neural Comp., 13 (2001), 2763. Google Scholar

[2]

A. Buonocore, L. Caputo, E. Pirozzi and M. F. Carfora, Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons,, Mathematical Biosciences and Engineering, 11 (2014), 189. Google Scholar

[3]

A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a stochastic leaky integrate-and-fire neuronal model., Neural Comput. 22(10) (2010), 22 (2010), 2558. Google Scholar

[4]

A. Buonocore, L. Caputo, M. F. Carfora and E. Pirozzi, On the Dynamics of a Couple of Mutually Interacting Neurons,, in Computer Aided Systems Theory-EUROCAST 2013, (2013), 36. Google Scholar

[5]

A. Buonocore, L. Caputo and E. Pirozzi, On the evaluation of firing densities for periodically driven neuron models,, Mathematical Biosciences, 214 (2008), 1. Google Scholar

[6]

A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, The first passage time problem for Gauss-diffusion processes: algorithmic approaches and applications to LIF neuronal model,, Methodol. Comput. Appl. Probab., 13 (2011), 29. Google Scholar

[7]

A. Di Crescenzo, B. Martinucci and E. Pirozzi, Feedback Effects in Simulated Stein's Coupled Neurons,, Lecture Notes in Computer Science 3643 (2005), 3643 (2005), 436. Google Scholar

[8]

A. Di Crescenzo, B. Martinucci and E. Pirozzi, On the dynamics of a pair of coupled neurons subject to alternating input rates,, BioSystems, 79 (2005), 109. Google Scholar

[9]

E. Di Nardo, A.G. Nobile, E. Pirozzi and L.M. Ricciardi, A computational approach to the first-passage-time problems for Gauss-Markov processes,, Adv Appl Prob, 33 (2001), 453. Google Scholar

[10]

V. Giorno, A.G. Nobile and L.M. Ricciardi, On the asymptotic behaviour of first-passage-time densities for one-dimensional diffusion processes and varying boundaries,, Advances in applied probability, (1990), 883. Google Scholar

[11]

P. Lánský, Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics,, Phys. Rev. E 55(2) (1997), 55 (1997), 2040. Google Scholar

[12]

A.G. Nobile, E. Pirozzi and L.M. Ricciardi, Asymptotics and evaluations of FPT densities through varying boundaries for Gauss-Markov processes,, Scientiae Mathematicae Japonicae, 67 (2008), 241. Google Scholar

[13]

A. Politi and S. Luccioli, Dynamics of Networks of Leaky-Integrate-and-Fire Neurons,, Network Science, (2010), 217. Google Scholar

[14]

L. Sacerdote, M. Tamborrino and C. Zucca, Detecting dependencies between spike trains of pairs of neurons through copulas,, Brain Research 1434 (2011), 1434 (2011), 243. Google Scholar

[15]

M. Schindler, P. Talkner and P. Hanggi, Escape rates in periodically driven Markov processes,, Physica A 351 (2005), 351 (2005), 40. Google Scholar

[16]

R. Sirovich, L. Sacerdote and A.E.P. Villa, Effect of increasing inhibitory inputs on information processing within a small network of spiking neuron,, Computational and Ambient Intelligence, (2007), 23. Google Scholar

[17]

H. Soula and CC. Chow, Stochastic dynamics of a finite-size spiking neural network., Neural Comput. 19(12) (2007), 19 (2007), 3262. Google Scholar

show all references

References:
[1]

K. Amemori and S. Ishii, Gaussian Process Approach to Spiking Neurons for Inhomogeneous Poisson Inputs., Neural Comp., 13 (2001), 2763. Google Scholar

[2]

A. Buonocore, L. Caputo, E. Pirozzi and M. F. Carfora, Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons,, Mathematical Biosciences and Engineering, 11 (2014), 189. Google Scholar

[3]

A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, On a stochastic leaky integrate-and-fire neuronal model., Neural Comput. 22(10) (2010), 22 (2010), 2558. Google Scholar

[4]

A. Buonocore, L. Caputo, M. F. Carfora and E. Pirozzi, On the Dynamics of a Couple of Mutually Interacting Neurons,, in Computer Aided Systems Theory-EUROCAST 2013, (2013), 36. Google Scholar

[5]

A. Buonocore, L. Caputo and E. Pirozzi, On the evaluation of firing densities for periodically driven neuron models,, Mathematical Biosciences, 214 (2008), 1. Google Scholar

[6]

A. Buonocore, L. Caputo, E. Pirozzi and L. M. Ricciardi, The first passage time problem for Gauss-diffusion processes: algorithmic approaches and applications to LIF neuronal model,, Methodol. Comput. Appl. Probab., 13 (2011), 29. Google Scholar

[7]

A. Di Crescenzo, B. Martinucci and E. Pirozzi, Feedback Effects in Simulated Stein's Coupled Neurons,, Lecture Notes in Computer Science 3643 (2005), 3643 (2005), 436. Google Scholar

[8]

A. Di Crescenzo, B. Martinucci and E. Pirozzi, On the dynamics of a pair of coupled neurons subject to alternating input rates,, BioSystems, 79 (2005), 109. Google Scholar

[9]

E. Di Nardo, A.G. Nobile, E. Pirozzi and L.M. Ricciardi, A computational approach to the first-passage-time problems for Gauss-Markov processes,, Adv Appl Prob, 33 (2001), 453. Google Scholar

[10]

V. Giorno, A.G. Nobile and L.M. Ricciardi, On the asymptotic behaviour of first-passage-time densities for one-dimensional diffusion processes and varying boundaries,, Advances in applied probability, (1990), 883. Google Scholar

[11]

P. Lánský, Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics,, Phys. Rev. E 55(2) (1997), 55 (1997), 2040. Google Scholar

[12]

A.G. Nobile, E. Pirozzi and L.M. Ricciardi, Asymptotics and evaluations of FPT densities through varying boundaries for Gauss-Markov processes,, Scientiae Mathematicae Japonicae, 67 (2008), 241. Google Scholar

[13]

A. Politi and S. Luccioli, Dynamics of Networks of Leaky-Integrate-and-Fire Neurons,, Network Science, (2010), 217. Google Scholar

[14]

L. Sacerdote, M. Tamborrino and C. Zucca, Detecting dependencies between spike trains of pairs of neurons through copulas,, Brain Research 1434 (2011), 1434 (2011), 243. Google Scholar

[15]

M. Schindler, P. Talkner and P. Hanggi, Escape rates in periodically driven Markov processes,, Physica A 351 (2005), 351 (2005), 40. Google Scholar

[16]

R. Sirovich, L. Sacerdote and A.E.P. Villa, Effect of increasing inhibitory inputs on information processing within a small network of spiking neuron,, Computational and Ambient Intelligence, (2007), 23. Google Scholar

[17]

H. Soula and CC. Chow, Stochastic dynamics of a finite-size spiking neural network., Neural Comput. 19(12) (2007), 19 (2007), 3262. Google Scholar

[1]

Massimiliano Tamborrino. Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences & Engineering, 2016, 13 (3) : 613-629. doi: 10.3934/mbe.2016011

[2]

Marie Levakova. Effect of spontaneous activity on stimulus detection in a simple neuronal model. Mathematical Biosciences & Engineering, 2016, 13 (3) : 551-568. doi: 10.3934/mbe.2016007

[3]

Qiuying Li, Lifang Huang, Jianshe Yu. Modulation of first-passage time for bursty gene expression via random signals. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 1261-1277. doi: 10.3934/mbe.2017065

[4]

Vincent Renault, Michèle Thieullen, Emmanuel Trélat. Optimal control of infinite-dimensional piecewise deterministic Markov processes and application to the control of neuronal dynamics via Optogenetics. Networks & Heterogeneous Media, 2017, 12 (3) : 417-459. doi: 10.3934/nhm.2017019

[5]

Vladimir Kazakov. Sampling - reconstruction procedure with jitter of markov continuous processes formed by stochastic differential equations of the first order. Conference Publications, 2009, 2009 (Special) : 433-441. doi: 10.3934/proc.2009.2009.433

[6]

Jiaqin Wei, Zhuo Jin, Hailiang Yang. Optimal dividend policy with liability constraint under a hidden Markov regime-switching model. Journal of Industrial & Management Optimization, 2019, 15 (4) : 1965-1993. doi: 10.3934/jimo.2018132

[7]

Karoline Disser, Matthias Liero. On gradient structures for Markov chains and the passage to Wasserstein gradient flows. Networks & Heterogeneous Media, 2015, 10 (2) : 233-253. doi: 10.3934/nhm.2015.10.233

[8]

Yinghui Dong, Kam Chuen Yuen, Guojing Wang. Pricing credit derivatives under a correlated regime-switching hazard processes model. Journal of Industrial & Management Optimization, 2017, 13 (3) : 1395-1415. doi: 10.3934/jimo.2016079

[9]

Martin Heida, Alexander Mielke. Averaging of time-periodic dissipation potentials in rate-independent processes. Discrete & Continuous Dynamical Systems - S, 2017, 10 (6) : 1303-1327. doi: 10.3934/dcdss.2017070

[10]

Wael Bahsoun, Paweł Góra. SRB measures for certain Markov processes. Discrete & Continuous Dynamical Systems - A, 2011, 30 (1) : 17-37. doi: 10.3934/dcds.2011.30.17

[11]

Mathias Staudigl. A limit theorem for Markov decision processes. Journal of Dynamics & Games, 2014, 1 (4) : 639-659. doi: 10.3934/jdg.2014.1.639

[12]

Artur Stephan, Holger Stephan. Memory equations as reduced Markov processes. Discrete & Continuous Dynamical Systems - A, 2019, 39 (4) : 2133-2155. doi: 10.3934/dcds.2019089

[13]

Linyi Qian, Wei Wang, Rongming Wang. Risk-minimizing portfolio selection for insurance payment processes under a Markov-modulated model. Journal of Industrial & Management Optimization, 2013, 9 (2) : 411-429. doi: 10.3934/jimo.2013.9.411

[14]

Zhenzhong Zhang, Enhua Zhang, Jinying Tong. Necessary and sufficient conditions for ergodicity of CIR model driven by stable processes with Markov switching. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2433-2455. doi: 10.3934/dcdsb.2018053

[15]

Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora. Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences & Engineering, 2014, 11 (2) : 189-201. doi: 10.3934/mbe.2014.11.189

[16]

Wei-Jian Bo, Guo Lin. Asymptotic spreading of time periodic competition diffusion systems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (9) : 3901-3914. doi: 10.3934/dcdsb.2018116

[17]

H.Thomas Banks, Shuhua Hu. Nonlinear stochastic Markov processes and modeling uncertainty in populations. Mathematical Biosciences & Engineering, 2012, 9 (1) : 1-25. doi: 10.3934/mbe.2012.9.1

[18]

Xian Chen, Zhi-Ming Ma. A transformation of Markov jump processes and applications in genetic study. Discrete & Continuous Dynamical Systems - A, 2014, 34 (12) : 5061-5084. doi: 10.3934/dcds.2014.34.5061

[19]

A. M. Vershik. Polymorphisms, Markov processes, quasi-similarity. Discrete & Continuous Dynamical Systems - A, 2005, 13 (5) : 1305-1324. doi: 10.3934/dcds.2005.13.1305

[20]

Ka Chun Cheung, Hailiang Yang. Optimal investment-consumption strategy in a discrete-time model with regime switching. Discrete & Continuous Dynamical Systems - B, 2007, 8 (2) : 315-332. doi: 10.3934/dcdsb.2007.8.315

 Impact Factor: 

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]