2015, 2015(special): 213-222. doi: 10.3934/proc.2015.0213

Jacobi fields for second-order differential equations on Lie algebroids

1. 

IUMA and Department of Theoretical Physics, University of Zaragoza, Spain

2. 

Department of Theoretical Physics, University of Zaragoza

3. 

IUMA and Departamento de Matemática Aplicada, Universidad de Zaragoza, 50009 Zaragoza

Received  September 2014 Revised  January 2015 Published  November 2015

We generalize the concept of Jacobi field for general second-order differential equations on a manifold and on a Lie algebroid. The Jacobi equation is expressed in terms of the dynamical covariant derivative and the generalized Jacobi endomorphism associated to the given differential equation.
Citation: José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213
References:
[1]

J. F. Cariñena and E. Martínez, Generalized Jacobi equation and Inverse Problem in Classical Mechanics,, In Group Theoretical Methods in Physics II (Moscow 1990), (1990).   Google Scholar

[2]

J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids,, Discrete and Continuous Dynamical Systems A, 24 2 (2009), 213.  doi: 10.3934/dcds.2009.24.213.  Google Scholar

[3]

M. Crampin and F. A. E. Pirani, Applicable Differential Geometry,, Cambridge University Press, (1986).   Google Scholar

[4]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).   Google Scholar

[5]

P. Foulon, Géométrie des équations différentielles du second ordre,, Ann. Inst. H. Poincaré Phys. Théor., 45 (1986), 1.   Google Scholar

[6]

L. A. Ibort and E. Martínez, Morse theory for Lagrangian systems,, Unpublished (1997), (1997).   Google Scholar

[7]

K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids,, Cambridge University Press, (2005).   Google Scholar

[8]

E. Martínez, Lagrangian Mechanics on Lie algebroids,, Acta Appl. Math., 67 (2001), 295.   Google Scholar

[9]

E. Martínez, Reduction in optimal control theory,, Reports on Mathematical Physics 53 (2004), 53 (2004), 79.  doi: 10.1016/S0034-4877(04)90005-5.  Google Scholar

[10]

E. Martínez, Classical field theory on Lie algebroids: variational aspects,, J. Phys. A: Math. Gen., 38 (2005), 7145.  doi: 10.1088/0305-4470/38/32/005.  Google Scholar

[11]

E. Martínez, Variational calculus on Lie algebroids,, ESAIM: Control, 14 02 (2007), 356.  doi: 10.1051/cocv:2007056.  Google Scholar

[12]

E. Martínez, J. F. Cariñena and W. Sarlet, Derivations of differential forms along the tangent bundle projection. Part II,, Differential Geometry and its Applications 3 (1993) 1-29, 3 (1993), 1.   Google Scholar

[13]

P. W. Michor, The Jacobi flow,, Rend. Sem. Mat. Univ. Politec. Torino 54 (1996), 54 (1996), 365.   Google Scholar

show all references

References:
[1]

J. F. Cariñena and E. Martínez, Generalized Jacobi equation and Inverse Problem in Classical Mechanics,, In Group Theoretical Methods in Physics II (Moscow 1990), (1990).   Google Scholar

[2]

J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids,, Discrete and Continuous Dynamical Systems A, 24 2 (2009), 213.  doi: 10.3934/dcds.2009.24.213.  Google Scholar

[3]

M. Crampin and F. A. E. Pirani, Applicable Differential Geometry,, Cambridge University Press, (1986).   Google Scholar

[4]

M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids,, J. Phys. A: Math. Gen., 38 (2005).   Google Scholar

[5]

P. Foulon, Géométrie des équations différentielles du second ordre,, Ann. Inst. H. Poincaré Phys. Théor., 45 (1986), 1.   Google Scholar

[6]

L. A. Ibort and E. Martínez, Morse theory for Lagrangian systems,, Unpublished (1997), (1997).   Google Scholar

[7]

K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids,, Cambridge University Press, (2005).   Google Scholar

[8]

E. Martínez, Lagrangian Mechanics on Lie algebroids,, Acta Appl. Math., 67 (2001), 295.   Google Scholar

[9]

E. Martínez, Reduction in optimal control theory,, Reports on Mathematical Physics 53 (2004), 53 (2004), 79.  doi: 10.1016/S0034-4877(04)90005-5.  Google Scholar

[10]

E. Martínez, Classical field theory on Lie algebroids: variational aspects,, J. Phys. A: Math. Gen., 38 (2005), 7145.  doi: 10.1088/0305-4470/38/32/005.  Google Scholar

[11]

E. Martínez, Variational calculus on Lie algebroids,, ESAIM: Control, 14 02 (2007), 356.  doi: 10.1051/cocv:2007056.  Google Scholar

[12]

E. Martínez, J. F. Cariñena and W. Sarlet, Derivations of differential forms along the tangent bundle projection. Part II,, Differential Geometry and its Applications 3 (1993) 1-29, 3 (1993), 1.   Google Scholar

[13]

P. W. Michor, The Jacobi flow,, Rend. Sem. Mat. Univ. Politec. Torino 54 (1996), 54 (1996), 365.   Google Scholar

[1]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[2]

Liupeng Wang, Yunqing Huang. Error estimates for second-order SAV finite element method to phase field crystal model. Electronic Research Archive, 2021, 29 (1) : 1735-1752. doi: 10.3934/era.2020089

[3]

Ying Lv, Yan-Fang Xue, Chun-Lei Tang. Ground state homoclinic orbits for a class of asymptotically periodic second-order Hamiltonian systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1627-1652. doi: 10.3934/dcdsb.2020176

[4]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021002

[5]

Olivier Ley, Erwin Topp, Miguel Yangari. Some results for the large time behavior of Hamilton-Jacobi equations with Caputo time derivative. Discrete & Continuous Dynamical Systems - A, 2021  doi: 10.3934/dcds.2021007

[6]

Weisong Dong, Chang Li. Second order estimates for complex Hessian equations on Hermitian manifolds. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020377

[7]

Sergey Rashkovskiy. Hamilton-Jacobi theory for Hamiltonian and non-Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 563-583. doi: 10.3934/jgm.2020024

[8]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[9]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[10]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020405

[11]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[12]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[13]

Elimhan N. Mahmudov. Infimal convolution and duality in convex optimal control problems with second order evolution differential inclusions. Evolution Equations & Control Theory, 2021, 10 (1) : 37-59. doi: 10.3934/eect.2020051

[14]

François Dubois. Third order equivalent equation of lattice Boltzmann scheme. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 221-248. doi: 10.3934/dcds.2009.23.221

[15]

Honglei Lang, Yunhe Sheng. Linearization of the higher analogue of Courant algebroids. Journal of Geometric Mechanics, 2020, 12 (4) : 585-606. doi: 10.3934/jgm.2020025

[16]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[17]

Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2020124

[18]

Kevin Li. Dynamic transitions of the Swift-Hohenberg equation with third-order dispersion. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021003

[19]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[20]

Abdollah Borhanifar, Maria Alessandra Ragusa, Sohrab Valizadeh. High-order numerical method for two-dimensional Riesz space fractional advection-dispersion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020355

 Impact Factor: 

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (0)

[Back to Top]