\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Jacobi fields for second-order differential equations on Lie algebroids

Abstract Related Papers Cited by
  • We generalize the concept of Jacobi field for general second-order differential equations on a manifold and on a Lie algebroid. The Jacobi equation is expressed in terms of the dynamical covariant derivative and the generalized Jacobi endomorphism associated to the given differential equation.
    Mathematics Subject Classification: 34A26, 58Z05, 58Cxx.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    J. F. Cariñena and E. Martínez, Generalized Jacobi equation and Inverse Problem in Classical Mechanics, In Group Theoretical Methods in Physics II (Moscow 1990), Nova Science Publishers, New York, 1991

    [2]

    J. Cortés, M. de León, J. C. Marrero and E. Martínez, Nonholonomic Lagrangian systems on Lie algebroids, Discrete and Continuous Dynamical Systems A, 24 2 (2009), 213-271doi: 10.3934/dcds.2009.24.213.

    [3]

    M. Crampin and F. A. E. Pirani, Applicable Differential Geometry, Cambridge University Press, 1986

    [4]

    M. de León, J. C. Marrero and E. Martínez, Lagrangian submanifolds and dynamics on Lie algebroids, J. Phys. A: Math. Gen., 38 (2005), R241-R308

    [5]

    P. Foulon, Géométrie des équations différentielles du second ordre, Ann. Inst. H. Poincaré Phys. Théor., 45 (1986), 1, 1-28

    [6]

    L. A. Ibort and E. Martínez, Morse theory for Lagrangian systems, Unpublished (1997)

    [7]

    K. C. H. Mackenzie, General Theory of Lie Groupoids and Lie Algebroids, Cambridge University Press, 2005

    [8]

    E. Martínez, Lagrangian Mechanics on Lie algebroids, Acta Appl. Math., 67 (2001), 295-320

    [9]

    E. Martínez, Reduction in optimal control theory, Reports on Mathematical Physics 53 (2004), 79-90doi: 10.1016/S0034-4877(04)90005-5.

    [10]

    E. Martínez, Classical field theory on Lie algebroids: variational aspects, J. Phys. A: Math. Gen., 38 (2005), 7145-7160doi: 10.1088/0305-4470/38/32/005.

    [11]

    E. Martínez, Variational calculus on Lie algebroids, ESAIM: Control, Optimisation and Calculus of Variations 14 02, 2007, 356-380doi: 10.1051/cocv:2007056.

    [12]

    E. Martínez, J. F. Cariñena and W. Sarlet, Derivations of differential forms along the tangent bundle projection. Part II, Differential Geometry and its Applications 3 (1993) 1-29

    [13]

    P. W. Michor, The Jacobi flow, Rend. Sem. Mat. Univ. Politec. Torino 54 (1996), 365-372

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(220) Cited by(0)

Access History

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return