2015, 2015(special): 223-229. doi: 10.3934/proc.2015.0223

Complete recuperation after the blow up time for semilinear problems

1. 

Departamento de Matemática Aplicada, E.T.S. Arquitectura. Universidad Politécnica de Madrid, Av. Juan de Herrera 4, Madrid 28040, Spain

2. 

IMI, Universidad Complutense de Madrid and CUNEF, 28040 Madrid, Spain, Spain

Received  September 2014 Revised  September 2015 Published  November 2015

We consider explosive solutions $y^{0}(t)$, $t\in \lbrack 0,T_{y^{0}}),$ of some ordinary differential equations \begin{equation*} P(T_{y^{0}}): \begin{array}{lc} \frac{dy}{dt}(t)=f(y(t)),y(0)=y_{0}, & \end{array} \end{equation*} where $f:$ $\mathbb{R}^{d}\rightarrow \mathbb{R}^{d}$ is a locally Lipschitz superlinear function and $d\geq 1$. In this work we analyze the following question of controlability: given $\epsilon >0$, a continuous deformation $y(t)$ de $y^{0}(t)$, built as a solution of the perturbed control problem obtained by replacing $f(y(t))$ by $f(y(t))+u(t),$ for a suitable control $u$, such that $y(t)=y^{0}(t)$ for any $t\in \lbrack 0,T_{y^{0}}-\epsilon ]$ and such that $y(t)$ also blows up in $t=T_{y_{0}}$ but in such a way that $y(t)$ could be extended beyond $T_{y_{0}}$ as a function $y\in L_{loc}^{1}(0,+\infty :\mathbb{R}^{d})$?
Citation: Alfonso C. Casal, Jesús Ildefonso Díaz, José Manuel Vegas. Complete recuperation after the blow up time for semilinear problems. Conference Publications, 2015, 2015 (special) : 223-229. doi: 10.3934/proc.2015.0223
References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[2]

V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations (Russian),, Vestnik Moskov Univ. Ser. I Mat. Meh., 2 (1961), 28. Google Scholar

[3]

H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,, North-Holland Mathematical Studies, (1973). Google Scholar

[4]

A. Casal, J. I. Díaz, and J. M. Vegas, Blow-up in some ordinary and partial differential equations with time-delay., Dynam. Systems Appl. 18(1) (2009), 18 (2009), 29. Google Scholar

[5]

J. I. Díaz and A. V. Fursikov, A simple proof of the approximate controllability from the interior for nonlinear evolution problems., Applied Mathematics Letters 7(5) (1994), 7 (1994), 85. Google Scholar

[6]

V. Laksmikantham and S. Leela, Differential and Integral Inequalities, Theory and Applications,, Vols. I and II, (1969). Google Scholar

[7]

S. Mirica, On differentiability with respect to initial data in the theory of differential equations., Rev. Roumaine des Math. Pures Appl., 48 (2003), 153. Google Scholar

show all references

References:
[1]

R. A. Adams, Sobolev Spaces,, Academic Press, (1975). Google Scholar

[2]

V. M. Alekseev, An estimate for the perturbations of the solutions of ordinary differential equations (Russian),, Vestnik Moskov Univ. Ser. I Mat. Meh., 2 (1961), 28. Google Scholar

[3]

H. Brezis, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert,, North-Holland Mathematical Studies, (1973). Google Scholar

[4]

A. Casal, J. I. Díaz, and J. M. Vegas, Blow-up in some ordinary and partial differential equations with time-delay., Dynam. Systems Appl. 18(1) (2009), 18 (2009), 29. Google Scholar

[5]

J. I. Díaz and A. V. Fursikov, A simple proof of the approximate controllability from the interior for nonlinear evolution problems., Applied Mathematics Letters 7(5) (1994), 7 (1994), 85. Google Scholar

[6]

V. Laksmikantham and S. Leela, Differential and Integral Inequalities, Theory and Applications,, Vols. I and II, (1969). Google Scholar

[7]

S. Mirica, On differentiability with respect to initial data in the theory of differential equations., Rev. Roumaine des Math. Pures Appl., 48 (2003), 153. Google Scholar

[1]

Petri Juutinen. Convexity of solutions to boundary blow-up problems. Communications on Pure & Applied Analysis, 2013, 12 (5) : 2267-2275. doi: 10.3934/cpaa.2013.12.2267

[2]

Yuta Wakasugi. Blow-up of solutions to the one-dimensional semilinear wave equation with damping depending on time and space variables. Discrete & Continuous Dynamical Systems - A, 2014, 34 (9) : 3831-3846. doi: 10.3934/dcds.2014.34.3831

[3]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[4]

Qiong Chen, Chunlai Mu, Zhaoyin Xiang. Blow-up and asymptotic behavior of solutions to a semilinear integrodifferential system. Communications on Pure & Applied Analysis, 2006, 5 (3) : 435-446. doi: 10.3934/cpaa.2006.5.435

[5]

Zhijun Zhang, Ling Mi. Blow-up rates of large solutions for semilinear elliptic equations. Communications on Pure & Applied Analysis, 2011, 10 (6) : 1733-1745. doi: 10.3934/cpaa.2011.10.1733

[6]

Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025

[7]

Pavol Quittner, Philippe Souplet. Blow-up rate of solutions of parabolic poblems with nonlinear boundary conditions. Discrete & Continuous Dynamical Systems - S, 2012, 5 (3) : 671-681. doi: 10.3934/dcdss.2012.5.671

[8]

Antonio Vitolo, Maria E. Amendola, Giulio Galise. On the uniqueness of blow-up solutions of fully nonlinear elliptic equations. Conference Publications, 2013, 2013 (special) : 771-780. doi: 10.3934/proc.2013.2013.771

[9]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[10]

Türker Özsarı. Blow-up of solutions of nonlinear Schrödinger equations with oscillating nonlinearities. Communications on Pure & Applied Analysis, 2019, 18 (1) : 539-558. doi: 10.3934/cpaa.2019027

[11]

Alexander Gladkov. Blow-up problem for semilinear heat equation with nonlinear nonlocal Neumann boundary condition. Communications on Pure & Applied Analysis, 2017, 16 (6) : 2053-2068. doi: 10.3934/cpaa.2017101

[12]

Kyouhei Wakasa. Blow-up of solutions to semilinear wave equations with non-zero initial data. Conference Publications, 2015, 2015 (special) : 1105-1114. doi: 10.3934/proc.2015.1105

[13]

Hua Chen, Huiyang Xu. Global existence and blow-up of solutions for infinitely degenerate semilinear pseudo-parabolic equations with logarithmic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2019, 39 (2) : 1185-1203. doi: 10.3934/dcds.2019051

[14]

Xiumei Deng, Jun Zhou. Global existence and blow-up of solutions to a semilinear heat equation with singular potential and logarithmic nonlinearity. Communications on Pure & Applied Analysis, 2020, 19 (2) : 923-939. doi: 10.3934/cpaa.2020042

[15]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[16]

Juntang Ding, Xuhui Shen. Upper and lower bounds for the blow-up time in quasilinear reaction diffusion problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4243-4254. doi: 10.3934/dcdsb.2018135

[17]

C. Y. Chan. Recent advances in quenching and blow-up of solutions. Conference Publications, 2001, 2001 (Special) : 88-95. doi: 10.3934/proc.2001.2001.88

[18]

Marek Fila, Hiroshi Matano. Connecting equilibria by blow-up solutions. Discrete & Continuous Dynamical Systems - A, 2000, 6 (1) : 155-164. doi: 10.3934/dcds.2000.6.155

[19]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

[20]

Cristophe Besse, Rémi Carles, Norbert J. Mauser, Hans Peter Stimming. Monotonicity properties of the blow-up time for nonlinear Schrödinger equations: Numerical evidence. Discrete & Continuous Dynamical Systems - B, 2008, 9 (1) : 11-36. doi: 10.3934/dcdsb.2008.9.11

 Impact Factor: 

Metrics

  • PDF downloads (11)
  • HTML views (0)
  • Cited by (0)

[Back to Top]