[1]
|
A. El-Sayed and A. Ibrahim, Multivalued fractional differential equations, Applied Mathematics and Computation, 68, 1, (1995), 15 - 25.
|
[2]
|
A.-G. Ibrahim and A. M. El-Sayed, Definite integral of fractional order for set-valued functions., J. Fractional Calc., 11, (1997), 81-87.
|
[3]
|
A. M. El-Sayed and A.-G. Ibrahim, Set-valued integral equations of fractional-orders, Applied Mathematics and Computation, 118, 1, (2001), 113 - 121.
|
[4]
|
N. Ahmed and K. Teo, Optimal control of distributed parameter systems. North Holland, 1981.
|
[5]
|
N. Ahmed and X. Xiang, Existence of solutions for a class of nonlinear evolution equations with nonmonotone perturbations, Nonlinear Analysis: Theory, Methods & Applications, 22, 1, (1994), 81 - 89.
|
[6]
|
Y. Ling and S. Ding, A class of analytic functions defined by fractional derivation., J. Math. Anal. Appl., 186, 2, (1994), 504-513.
|
[7]
|
D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation., J. Math. Anal. Appl., 204, 2 (1996), 609-625.
|
[8]
|
A. Kilbas and J. Trujillo, Differential equations of fractional order: Methods, results and problems. I., Appl. Anal., 78, 1-2 (2001), 153-192.
|
[9]
|
S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales., Fundamenta math., 3 (1922), 133-181.
|
[10]
|
W. Kirk, P. Srinivasan, and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions., Fixed Point Theory, 4, 1 (2003), 79-89.
|
[11]
|
V. Popa, Fixed point theorems for mappings in d-complete topological spaces., Math. Morav., 6, (2002), 87-92.
|
[12]
|
I. Altun and H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory and Applications, 2010, 1, 2010, 621469.
|
[13]
|
H. K. Nashine, Z. Kadelburg, and P. Kumam, Implicit-relation-type cyclic contractive mappings and applications to integral equations, Abstract and Applied Analysis, 2012, (2012), 15.
|