2015, 2015(special): 248-257. doi: 10.3934/proc.2015.0248

Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays

1. 

Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand, Thailand

Received  August 2014 Revised  May 2015 Published  November 2015

We investigate the existence of fixed points for a very general class of cyclic implicit contractive set-valued operators. We also point out that this class contains an important case of ordered contractions. As an application, we show the solvability of delayed fractional integral inclusion problems.
Citation: Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248
References:
[1]

A. El-Sayed and A. Ibrahim, Multivalued fractional differential equations,, Applied Mathematics and Computation, 68 (1995).   Google Scholar

[2]

A.-G. Ibrahim and A. M. El-Sayed, Definite integral of fractional order for set-valued functions.,, J. Fractional Calc., 11 (1997), 81.   Google Scholar

[3]

A. M. El-Sayed and A.-G. Ibrahim, Set-valued integral equations of fractional-orders,, Applied Mathematics and Computation, 118 (2001).   Google Scholar

[4]

N. Ahmed and K. Teo, Optimal control of distributed parameter systems., North Holland, (1981).   Google Scholar

[5]

N. Ahmed and X. Xiang, Existence of solutions for a class of nonlinear evolution equations with nonmonotone perturbations,, Nonlinear Analysis: Theory, 22 (1994).   Google Scholar

[6]

Y. Ling and S. Ding, A class of analytic functions defined by fractional derivation.,, J. Math. Anal. Appl., 186 (1994), 504.   Google Scholar

[7]

D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation.,, J. Math. Anal. Appl., 204 (1996), 609.   Google Scholar

[8]

A. Kilbas and J. Trujillo, Differential equations of fractional order: Methods, results and problems. I.,, Appl. Anal., 78 (2001), 1.   Google Scholar

[9]

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.,, Fundamenta math., 3 (1922), 133.   Google Scholar

[10]

W. Kirk, P. Srinivasan, and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions.,, Fixed Point Theory, 4 (2003), 79.   Google Scholar

[11]

V. Popa, Fixed point theorems for mappings in d-complete topological spaces.,, Math. Morav., 6 (2002), 87.   Google Scholar

[12]

I. Altun and H. Simsek, Some fixed point theorems on ordered metric spaces and application,, Fixed Point Theory and Applications, 2010 (2010).   Google Scholar

[13]

H. K. Nashine, Z. Kadelburg, and P. Kumam, Implicit-relation-type cyclic contractive mappings and applications to integral equations,, Abstract and Applied Analysis, 2012 (2012).   Google Scholar

show all references

References:
[1]

A. El-Sayed and A. Ibrahim, Multivalued fractional differential equations,, Applied Mathematics and Computation, 68 (1995).   Google Scholar

[2]

A.-G. Ibrahim and A. M. El-Sayed, Definite integral of fractional order for set-valued functions.,, J. Fractional Calc., 11 (1997), 81.   Google Scholar

[3]

A. M. El-Sayed and A.-G. Ibrahim, Set-valued integral equations of fractional-orders,, Applied Mathematics and Computation, 118 (2001).   Google Scholar

[4]

N. Ahmed and K. Teo, Optimal control of distributed parameter systems., North Holland, (1981).   Google Scholar

[5]

N. Ahmed and X. Xiang, Existence of solutions for a class of nonlinear evolution equations with nonmonotone perturbations,, Nonlinear Analysis: Theory, 22 (1994).   Google Scholar

[6]

Y. Ling and S. Ding, A class of analytic functions defined by fractional derivation.,, J. Math. Anal. Appl., 186 (1994), 504.   Google Scholar

[7]

D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation.,, J. Math. Anal. Appl., 204 (1996), 609.   Google Scholar

[8]

A. Kilbas and J. Trujillo, Differential equations of fractional order: Methods, results and problems. I.,, Appl. Anal., 78 (2001), 1.   Google Scholar

[9]

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.,, Fundamenta math., 3 (1922), 133.   Google Scholar

[10]

W. Kirk, P. Srinivasan, and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions.,, Fixed Point Theory, 4 (2003), 79.   Google Scholar

[11]

V. Popa, Fixed point theorems for mappings in d-complete topological spaces.,, Math. Morav., 6 (2002), 87.   Google Scholar

[12]

I. Altun and H. Simsek, Some fixed point theorems on ordered metric spaces and application,, Fixed Point Theory and Applications, 2010 (2010).   Google Scholar

[13]

H. K. Nashine, Z. Kadelburg, and P. Kumam, Implicit-relation-type cyclic contractive mappings and applications to integral equations,, Abstract and Applied Analysis, 2012 (2012).   Google Scholar

[1]

Hadi Khatibzadeh, Vahid Mohebbi, Mohammad Hossein Alizadeh. On the cyclic pseudomonotonicity and the proximal point algorithm. Numerical Algebra, Control & Optimization, 2018, 8 (4) : 441-449. doi: 10.3934/naco.2018027

[2]

Nicholas Long. Fixed point shifts of inert involutions. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1297-1317. doi: 10.3934/dcds.2009.25.1297

[3]

Yakov Krasnov, Alexander Kononovich, Grigory Osharovich. On a structure of the fixed point set of homogeneous maps. Discrete & Continuous Dynamical Systems - S, 2013, 6 (4) : 1017-1027. doi: 10.3934/dcdss.2013.6.1017

[4]

Jorge Groisman. Expansive and fixed point free homeomorphisms of the plane. Discrete & Continuous Dynamical Systems - A, 2012, 32 (5) : 1709-1721. doi: 10.3934/dcds.2012.32.1709

[5]

Shui-Hung Hou. On an application of fixed point theorem to nonlinear inclusions. Conference Publications, 2011, 2011 (Special) : 692-697. doi: 10.3934/proc.2011.2011.692

[6]

Luis Hernández-Corbato, Francisco R. Ruiz del Portal. Fixed point indices of planar continuous maps. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2979-2995. doi: 10.3934/dcds.2015.35.2979

[7]

Antonio Garcia. Transition tori near an elliptic-fixed point. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 381-392. doi: 10.3934/dcds.2000.6.381

[8]

Yong Ji, Ercai Chen, Yunping Wang, Cao Zhao. Bowen entropy for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2019, 39 (11) : 6231-6239. doi: 10.3934/dcds.2019271

[9]

Mario Ahues, Filomena D. d'Almeida, Alain Largillier, Paulo B. Vasconcelos. Defect correction for spectral computations for a singular integral operator. Communications on Pure & Applied Analysis, 2006, 5 (2) : 241-250. doi: 10.3934/cpaa.2006.5.241

[10]

Marta García-Huidobro, Raul Manásevich. A three point boundary value problem containing the operator. Conference Publications, 2003, 2003 (Special) : 313-319. doi: 10.3934/proc.2003.2003.313

[11]

Teck-Cheong Lim. On the largest common fixed point of a commuting family of isotone maps. Conference Publications, 2005, 2005 (Special) : 621-623. doi: 10.3934/proc.2005.2005.621

[12]

Mircea Sofonea, Cezar Avramescu, Andaluzia Matei. A fixed point result with applications in the study of viscoplastic frictionless contact problems. Communications on Pure & Applied Analysis, 2008, 7 (3) : 645-658. doi: 10.3934/cpaa.2008.7.645

[13]

Cleon S. Barroso. The approximate fixed point property in Hausdorff topological vector spaces and applications. Discrete & Continuous Dynamical Systems - A, 2009, 25 (2) : 467-479. doi: 10.3934/dcds.2009.25.467

[14]

Dou Dou, Meng Fan, Hua Qiu. Topological entropy on subsets for fixed-point free flows. Discrete & Continuous Dynamical Systems - A, 2017, 37 (12) : 6319-6331. doi: 10.3934/dcds.2017273

[15]

Mark S. Gockenbach, Akhtar A. Khan. Identification of Lamé parameters in linear elasticity: a fixed point approach. Journal of Industrial & Management Optimization, 2005, 1 (4) : 487-497. doi: 10.3934/jimo.2005.1.487

[16]

Grzegorz Graff, Piotr Nowak-Przygodzki. Fixed point indices of iterations of $C^1$ maps in $R^3$. Discrete & Continuous Dynamical Systems - A, 2006, 16 (4) : 843-856. doi: 10.3934/dcds.2006.16.843

[17]

Romain Aimino, Huyi Hu, Matthew Nicol, Andrei Török, Sandro Vaienti. Polynomial loss of memory for maps of the interval with a neutral fixed point. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 793-806. doi: 10.3934/dcds.2015.35.793

[18]

Hans Koch. A renormalization group fixed point associated with the breakup of golden invariant tori. Discrete & Continuous Dynamical Systems - A, 2004, 11 (4) : 881-909. doi: 10.3934/dcds.2004.11.881

[19]

Paolo Perfetti. Fixed point theorems in the Arnol'd model about instability of the action-variables in phase-space. Discrete & Continuous Dynamical Systems - A, 1998, 4 (2) : 379-391. doi: 10.3934/dcds.1998.4.379

[20]

Chunqing Wu, Patricia J.Y. Wong. Global asymptotical stability of the coexistence fixed point of a Ricker-type competitive model. Discrete & Continuous Dynamical Systems - B, 2015, 20 (9) : 3255-3266. doi: 10.3934/dcdsb.2015.20.3255

 Impact Factor: 

Metrics

  • PDF downloads (19)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]