2015, 2015(special): 248-257. doi: 10.3934/proc.2015.0248

Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays

1. 

Department of Mathematics, Faculty of Science, King Mongkut's University of Technology Thonburi (KMUTT), 126 Pracha-Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand, Thailand

Received  August 2014 Revised  May 2015 Published  November 2015

We investigate the existence of fixed points for a very general class of cyclic implicit contractive set-valued operators. We also point out that this class contains an important case of ordered contractions. As an application, we show the solvability of delayed fractional integral inclusion problems.
Citation: Parin Chaipunya, Poom Kumam. Fixed point theorems for cyclic operators with application in Fractional integral inclusions with delays. Conference Publications, 2015, 2015 (special) : 248-257. doi: 10.3934/proc.2015.0248
References:
[1]

A. El-Sayed and A. Ibrahim, Multivalued fractional differential equations,, Applied Mathematics and Computation, 68 (1995).   Google Scholar

[2]

A.-G. Ibrahim and A. M. El-Sayed, Definite integral of fractional order for set-valued functions.,, J. Fractional Calc., 11 (1997), 81.   Google Scholar

[3]

A. M. El-Sayed and A.-G. Ibrahim, Set-valued integral equations of fractional-orders,, Applied Mathematics and Computation, 118 (2001).   Google Scholar

[4]

N. Ahmed and K. Teo, Optimal control of distributed parameter systems., North Holland, (1981).   Google Scholar

[5]

N. Ahmed and X. Xiang, Existence of solutions for a class of nonlinear evolution equations with nonmonotone perturbations,, Nonlinear Analysis: Theory, 22 (1994).   Google Scholar

[6]

Y. Ling and S. Ding, A class of analytic functions defined by fractional derivation.,, J. Math. Anal. Appl., 186 (1994), 504.   Google Scholar

[7]

D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation.,, J. Math. Anal. Appl., 204 (1996), 609.   Google Scholar

[8]

A. Kilbas and J. Trujillo, Differential equations of fractional order: Methods, results and problems. I.,, Appl. Anal., 78 (2001), 1.   Google Scholar

[9]

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.,, Fundamenta math., 3 (1922), 133.   Google Scholar

[10]

W. Kirk, P. Srinivasan, and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions.,, Fixed Point Theory, 4 (2003), 79.   Google Scholar

[11]

V. Popa, Fixed point theorems for mappings in d-complete topological spaces.,, Math. Morav., 6 (2002), 87.   Google Scholar

[12]

I. Altun and H. Simsek, Some fixed point theorems on ordered metric spaces and application,, Fixed Point Theory and Applications, 2010 (2010).   Google Scholar

[13]

H. K. Nashine, Z. Kadelburg, and P. Kumam, Implicit-relation-type cyclic contractive mappings and applications to integral equations,, Abstract and Applied Analysis, 2012 (2012).   Google Scholar

show all references

References:
[1]

A. El-Sayed and A. Ibrahim, Multivalued fractional differential equations,, Applied Mathematics and Computation, 68 (1995).   Google Scholar

[2]

A.-G. Ibrahim and A. M. El-Sayed, Definite integral of fractional order for set-valued functions.,, J. Fractional Calc., 11 (1997), 81.   Google Scholar

[3]

A. M. El-Sayed and A.-G. Ibrahim, Set-valued integral equations of fractional-orders,, Applied Mathematics and Computation, 118 (2001).   Google Scholar

[4]

N. Ahmed and K. Teo, Optimal control of distributed parameter systems., North Holland, (1981).   Google Scholar

[5]

N. Ahmed and X. Xiang, Existence of solutions for a class of nonlinear evolution equations with nonmonotone perturbations,, Nonlinear Analysis: Theory, 22 (1994).   Google Scholar

[6]

Y. Ling and S. Ding, A class of analytic functions defined by fractional derivation.,, J. Math. Anal. Appl., 186 (1994), 504.   Google Scholar

[7]

D. Delbosco and L. Rodino, Existence and uniqueness for a nonlinear fractional differential equation.,, J. Math. Anal. Appl., 204 (1996), 609.   Google Scholar

[8]

A. Kilbas and J. Trujillo, Differential equations of fractional order: Methods, results and problems. I.,, Appl. Anal., 78 (2001), 1.   Google Scholar

[9]

S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales.,, Fundamenta math., 3 (1922), 133.   Google Scholar

[10]

W. Kirk, P. Srinivasan, and P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions.,, Fixed Point Theory, 4 (2003), 79.   Google Scholar

[11]

V. Popa, Fixed point theorems for mappings in d-complete topological spaces.,, Math. Morav., 6 (2002), 87.   Google Scholar

[12]

I. Altun and H. Simsek, Some fixed point theorems on ordered metric spaces and application,, Fixed Point Theory and Applications, 2010 (2010).   Google Scholar

[13]

H. K. Nashine, Z. Kadelburg, and P. Kumam, Implicit-relation-type cyclic contractive mappings and applications to integral equations,, Abstract and Applied Analysis, 2012 (2012).   Google Scholar

[1]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[4]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[5]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[8]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[9]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[10]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[11]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[12]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[13]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[14]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[15]

Lihong Zhang, Wenwen Hou, Bashir Ahmad, Guotao Wang. Radial symmetry for logarithmic Choquard equation involving a generalized tempered fractional $ p $-Laplacian. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020445

[16]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[17]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[18]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

 Impact Factor: 

Metrics

  • PDF downloads (56)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]