2015, 2015(special): 276-286. doi: 10.3934/proc.2015.0276

Existence of nontrivial solutions for equations of $p(x)$-Laplace type without Ambrosetti and Rabinowitz condition

1. 

Department of Mathematical Sciences, Seoul National University, Seoul 151-742, South Korea

2. 

Department of Mathematics Education, Sangmyung University, Seoul 110--743

Received  September 2014 Revised  August 2015 Published  November 2015

We study the following elliptic equations with variable exponents \begin{equation*} \begin{cases} -\text{div}(\varphi(x,\nabla u))+{|u|}^{p(x)-2}u= f(x,u) \quad &\text{in } \Omega \\ \varphi(x,\nabla u) \frac{\partial u}{\partial n}= g(x,u) & \text{on }\partial\Omega. \end{cases} \tag{P} \end{equation*} Under suitable conditions on $\phi$, $f$, and $g$, by employing the mountain pass theorem, the problem (P) has at least one nontrivial weak solution without assuming the Ambrosetti and Rabinowitz type condition.
Citation: Eun Bee Choi, Yun-Ho Kim. Existence of nontrivial solutions for equations of $p(x)$-Laplace type without Ambrosetti and Rabinowitz condition. Conference Publications, 2015, 2015 (special) : 276-286. doi: 10.3934/proc.2015.0276
References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  Google Scholar

[2]

M. M. Boureanu and F. Preda, Infinitely many solutions for elliptic problems with variable exponent and nonlinear boundary conditions, Nonlinear Differ. Equ. Appl., 19 (2012), 235-251.  Google Scholar

[3]

N. T. Chung, Multiple solutions for quasilinear elliptic problems with nonlinear boundary conditions, Electron. J. Diff. Eqns., 2008 (2008), 1-6.  Google Scholar

[4]

L. Diening, P. Harjulehto and P. Hästö, M. R.užička, Lebesgue and Sobolev Spaces with Variable Exponents, in: Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, 2011.  Google Scholar

[5]

D. E. Edmunds and J. Rákosník, Sobolev embedding with variable exponent, Studia Math., 143 (2000), 267-293.  Google Scholar

[6]

X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl., 339 (2008), 1395-1412.  Google Scholar

[7]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.  Google Scholar

[8]

X. Fan and Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852.  Google Scholar

[9]

B. Ge, On the superlinear problems involving the $p(x)$-Laplacian and a non-local term without AR-condition, Nonlinear Anal., 102 (2014), 133-143.  Google Scholar

[10]

C. Ji, On the superlinear problem involving the $p(x)$-Laplacian, Electron. J. Qual. Theory Differ., 40 (2011), 1-9.  Google Scholar

[11]

I. H. Kim and Y. H. Kim, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents, Manuscripta Math., 147 (2015), 169-191.  Google Scholar

[12]

V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal., 71 (2009), 3305-3321.  Google Scholar

[13]

S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.  Google Scholar

[14]

F. Y. Lu and G. Q. Deng, Infinitely many weak solutions of the $p$-Laplacian equation with nonlinear boundary conditions, The Scientific World Journal, 2014 (2014), 1-5. Google Scholar

[15]

M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2625-2641  Google Scholar

[16]

O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 245 (2008), 3628-3638.  Google Scholar

[17]

P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566.  Google Scholar

[18]

M. R.užička, Electrorheological Fluids: Modeling and Mathematical Theory, in: Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.  Google Scholar

[19]

I. Sim and Y. H. Kim, Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents, Discrete Contin. Dyn. Syst. Supplement, 2013 (2013), 695-707. Google Scholar

[20]

Z. Tan and F. Fang, On superlinear $p(x)$-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal., 75 (2012), 3902-3915.  Google Scholar

[21]

P. Winkert, Multiplicity results for a class of elliptic problems with nonlinear boundary condition, Commun. Pure Appl. Anal., 12 (2013), 785-802.  Google Scholar

[22]

J. Yao, Solutions for Neumann boundary value problems involving $p(x)$-Laplace operators, Nonlinear Anal., 68 (2008), 1271-1283.  Google Scholar

[23]

J. H. Zhao and P. H. Zhao, Existence of infinitely many weak solutions for the $p$-Laplacian with nonlinear boundary conditions, Nonlinear Anal., 69 (2008), 1343-1355.  Google Scholar

show all references

References:
[1]

A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.  Google Scholar

[2]

M. M. Boureanu and F. Preda, Infinitely many solutions for elliptic problems with variable exponent and nonlinear boundary conditions, Nonlinear Differ. Equ. Appl., 19 (2012), 235-251.  Google Scholar

[3]

N. T. Chung, Multiple solutions for quasilinear elliptic problems with nonlinear boundary conditions, Electron. J. Diff. Eqns., 2008 (2008), 1-6.  Google Scholar

[4]

L. Diening, P. Harjulehto and P. Hästö, M. R.užička, Lebesgue and Sobolev Spaces with Variable Exponents, in: Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, 2011.  Google Scholar

[5]

D. E. Edmunds and J. Rákosník, Sobolev embedding with variable exponent, Studia Math., 143 (2000), 267-293.  Google Scholar

[6]

X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl., 339 (2008), 1395-1412.  Google Scholar

[7]

X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.  Google Scholar

[8]

X. Fan and Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852.  Google Scholar

[9]

B. Ge, On the superlinear problems involving the $p(x)$-Laplacian and a non-local term without AR-condition, Nonlinear Anal., 102 (2014), 133-143.  Google Scholar

[10]

C. Ji, On the superlinear problem involving the $p(x)$-Laplacian, Electron. J. Qual. Theory Differ., 40 (2011), 1-9.  Google Scholar

[11]

I. H. Kim and Y. H. Kim, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents, Manuscripta Math., 147 (2015), 169-191.  Google Scholar

[12]

V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal., 71 (2009), 3305-3321.  Google Scholar

[13]

S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.  Google Scholar

[14]

F. Y. Lu and G. Q. Deng, Infinitely many weak solutions of the $p$-Laplacian equation with nonlinear boundary conditions, The Scientific World Journal, 2014 (2014), 1-5. Google Scholar

[15]

M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2625-2641  Google Scholar

[16]

O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 245 (2008), 3628-3638.  Google Scholar

[17]

P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566.  Google Scholar

[18]

M. R.užička, Electrorheological Fluids: Modeling and Mathematical Theory, in: Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.  Google Scholar

[19]

I. Sim and Y. H. Kim, Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents, Discrete Contin. Dyn. Syst. Supplement, 2013 (2013), 695-707. Google Scholar

[20]

Z. Tan and F. Fang, On superlinear $p(x)$-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal., 75 (2012), 3902-3915.  Google Scholar

[21]

P. Winkert, Multiplicity results for a class of elliptic problems with nonlinear boundary condition, Commun. Pure Appl. Anal., 12 (2013), 785-802.  Google Scholar

[22]

J. Yao, Solutions for Neumann boundary value problems involving $p(x)$-Laplace operators, Nonlinear Anal., 68 (2008), 1271-1283.  Google Scholar

[23]

J. H. Zhao and P. H. Zhao, Existence of infinitely many weak solutions for the $p$-Laplacian with nonlinear boundary conditions, Nonlinear Anal., 69 (2008), 1343-1355.  Google Scholar

[1]

Dorota Bors. Application of Mountain Pass Theorem to superlinear equations with fractional Laplacian controlled by distributed parameters and boundary data. Discrete & Continuous Dynamical Systems - B, 2018, 23 (1) : 29-43. doi: 10.3934/dcdsb.2018003

[2]

Dmitry Glotov, P. J. McKenna. Numerical mountain pass solutions of Ginzburg-Landau type equations. Communications on Pure & Applied Analysis, 2008, 7 (6) : 1345-1359. doi: 10.3934/cpaa.2008.7.1345

[3]

Carla Baroncini, Julián Fernández Bonder. An extension of a Theorem of V. Šverák to variable exponent spaces. Communications on Pure & Applied Analysis, 2015, 14 (5) : 1987-2007. doi: 10.3934/cpaa.2015.14.1987

[4]

Peter Weidemaier. Maximal regularity for parabolic equations with inhomogeneous boundary conditions in Sobolev spaces with mixed $L_p$-norm. Electronic Research Announcements, 2002, 8: 47-51.

[5]

Hugo Beirão da Veiga. A challenging open problem: The inviscid limit under slip-type boundary conditions.. Discrete & Continuous Dynamical Systems - S, 2010, 3 (2) : 231-236. doi: 10.3934/dcdss.2010.3.231

[6]

Abdelaaziz Sbai, Youssef El Hadfi, Mohammed Srati, Noureddine Aboutabit. Existence of solution for Kirchhoff type problem in Orlicz-Sobolev spaces Via Leray-Schauder's nonlinear alternative. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021015

[7]

José M. Arrieta, Simone M. Bruschi. Very rapidly varying boundaries in equations with nonlinear boundary conditions. The case of a non uniformly Lipschitz deformation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (2) : 327-351. doi: 10.3934/dcdsb.2010.14.327

[8]

Miroslav Bulíček, Annegret Glitzky, Matthias Liero. Thermistor systems of p(x)-Laplace-type with discontinuous exponents via entropy solutions. Discrete & Continuous Dynamical Systems - S, 2017, 10 (4) : 697-713. doi: 10.3934/dcdss.2017035

[9]

Chao Zhang, Xia Zhang, Shulin Zhou. Gradient estimates for the strong $p(x)$-Laplace equation. Discrete & Continuous Dynamical Systems, 2017, 37 (7) : 4109-4129. doi: 10.3934/dcds.2017175

[10]

Gabriele Bonanno, Giuseppina D'Aguì, Angela Sciammetta. One-dimensional nonlinear boundary value problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 179-191. doi: 10.3934/dcdss.2018011

[11]

Ian Schindler, Kyril Tintarev. Mountain pass solutions to semilinear problems with critical nonlinearity. Conference Publications, 2007, 2007 (Special) : 912-919. doi: 10.3934/proc.2007.2007.912

[12]

P. Cerejeiras, U. Kähler, M. M. Rodrigues, N. Vieira. Hodge type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case. Communications on Pure & Applied Analysis, 2014, 13 (6) : 2253-2272. doi: 10.3934/cpaa.2014.13.2253

[13]

Maria-Magdalena Boureanu. Fourth-order problems with Leray-Lions type operators in variable exponent spaces. Discrete & Continuous Dynamical Systems - S, 2019, 12 (2) : 231-243. doi: 10.3934/dcdss.2019016

[14]

SYLWIA DUDEK, IWONA SKRZYPCZAK. Liouville theorems for elliptic problems in variable exponent spaces. Communications on Pure & Applied Analysis, 2017, 16 (2) : 513-532. doi: 10.3934/cpaa.2017026

[15]

Mariane Bourgoing. Viscosity solutions of fully nonlinear second order parabolic equations with $L^1$ dependence in time and Neumann boundary conditions. Existence and applications to the level-set approach. Discrete & Continuous Dynamical Systems, 2008, 21 (4) : 1047-1069. doi: 10.3934/dcds.2008.21.1047

[16]

VicenŢiu D. RǍdulescu, Somayeh Saiedinezhad. A nonlinear eigenvalue problem with $ p(x) $-growth and generalized Robin boundary value condition. Communications on Pure & Applied Analysis, 2018, 17 (1) : 39-52. doi: 10.3934/cpaa.2018003

[17]

Ming Wang. Sharp global well-posedness of the BBM equation in $L^p$ type Sobolev spaces. Discrete & Continuous Dynamical Systems, 2016, 36 (10) : 5763-5788. doi: 10.3934/dcds.2016053

[18]

Anouar Bahrouni, VicenŢiu D. RĂdulescu. On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent. Discrete & Continuous Dynamical Systems - S, 2018, 11 (3) : 379-389. doi: 10.3934/dcdss.2018021

[19]

Shiping Cao, Shuangping Li, Robert S. Strichartz, Prem Talwai. A trace theorem for Sobolev spaces on the Sierpinski gasket. Communications on Pure & Applied Analysis, 2020, 19 (7) : 3901-3916. doi: 10.3934/cpaa.2020159

[20]

Claudianor O. Alves, Giovany M. Figueiredo, Marcelo F. Furtado. Multiplicity of solutions for elliptic systems via local Mountain Pass method. Communications on Pure & Applied Analysis, 2009, 8 (6) : 1745-1758. doi: 10.3934/cpaa.2009.8.1745

 Impact Factor: 

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]