[1]
|
A. Ambrosetti and P. Rabinowitz, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14 (1973), 349-381.
|
[2]
|
M. M. Boureanu and F. Preda, Infinitely many solutions for elliptic problems with variable exponent and nonlinear boundary conditions, Nonlinear Differ. Equ. Appl., 19 (2012), 235-251.
|
[3]
|
N. T. Chung, Multiple solutions for quasilinear elliptic problems with nonlinear boundary conditions, Electron. J. Diff. Eqns., 2008 (2008), 1-6.
|
[4]
|
L. Diening, P. Harjulehto and P. Hästö, M. R.užička, Lebesgue and Sobolev Spaces with Variable Exponents, in: Lecture Notes in Mathematics, vol. 2017, Springer-Verlag, 2011.
|
[5]
|
D. E. Edmunds and J. Rákosník, Sobolev embedding with variable exponent, Studia Math., 143 (2000), 267-293.
|
[6]
|
X. Fan, Boundary trace embedding theorems for variable exponent Sobolev spaces, J. Math. Anal. Appl., 339 (2008), 1395-1412.
|
[7]
|
X. Fan and D. Zhao, On the spaces $L^{p(x)}(\Omega)$ and $W^{m,p(x)}(\Omega)$, J. Math. Anal. Appl., 263 (2001), 424-446.
|
[8]
|
X. Fan and Q. H. Zhang, Existence of solutions for $p(x)$-Laplacian Dirichlet problem, Nonlinear Anal., 52 (2003), 1843-1852.
|
[9]
|
B. Ge, On the superlinear problems involving the $p(x)$-Laplacian and a non-local term without AR-condition, Nonlinear Anal., 102 (2014), 133-143.
|
[10]
|
C. Ji, On the superlinear problem involving the $p(x)$-Laplacian, Electron. J. Qual. Theory Differ., 40 (2011), 1-9.
|
[11]
|
I. H. Kim and Y. H. Kim, Mountain pass type solutions and positivity of the infimum eigenvalue for quasilinear elliptic equations with variable exponents, Manuscripta Math., 147 (2015), 169-191.
|
[12]
|
V. K. Le, On a sub-supersolution method for variational inequalities with Leray-Lions operators in variable exponent spaces, Nonlinear Anal., 71 (2009), 3305-3321.
|
[13]
|
S. Liu, On superlinear problems without the Ambrosetti and Rabinowitz condition, Nonlinear Anal., 73 (2010), 788-795.
|
[14]
|
F. Y. Lu and G. Q. Deng, Infinitely many weak solutions of the $p$-Laplacian equation with nonlinear boundary conditions, The Scientific World Journal, 2014 (2014), 1-5.
|
[15]
|
M. Mihăilescu and V. Rădulescu, A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 462 (2006), 2625-2641
|
[16]
|
O. H. Miyagaki and M. A. S. Souto, Superlinear problems without Ambrosetti and Rabinowitz growth condition, J. Differential Equations, 245 (2008), 3628-3638.
|
[17]
|
P. Pucci and Q. Zhang, Existence of entire solutions for a class of variable exponent elliptic equations, J. Differential Equations, 257 (2014), 1529-1566.
|
[18]
|
M. R.užička, Electrorheological Fluids: Modeling and Mathematical Theory, in: Lecture Notes in Mathematics, vol. 1748, Springer-Verlag, Berlin, 2000.
|
[19]
|
I. Sim and Y. H. Kim, Existence of solutions and positivity of the infimum eigenvalue for degenerate elliptic equations with variable exponents, Discrete Contin. Dyn. Syst. Supplement, 2013 (2013), 695-707.
|
[20]
|
Z. Tan and F. Fang, On superlinear $p(x)$-Laplacian problems without Ambrosetti and Rabinowitz condition, Nonlinear Anal., 75 (2012), 3902-3915.
|
[21]
|
P. Winkert, Multiplicity results for a class of elliptic problems with nonlinear boundary condition, Commun. Pure Appl. Anal., 12 (2013), 785-802.
|
[22]
|
J. Yao, Solutions for Neumann boundary value problems involving $p(x)$-Laplace operators, Nonlinear Anal., 68 (2008), 1271-1283.
|
[23]
|
J. H. Zhao and P. H. Zhao, Existence of infinitely many weak solutions for the $p$-Laplacian with nonlinear boundary conditions, Nonlinear Anal., 69 (2008), 1343-1355.
|