2015, 2015(special): 297-303. doi: 10.3934/proc.2015.0297

Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape

1. 

Dipartimento di Matematica e Geoscienze, Università degli Studi di Trieste, Via A. Valerio 12/1, 34127 Trieste

2. 

Université de Valenciennes et du Hainaut Cambrésis, LAMAV, FR CNRS 2956, Institut des Sciences et Techniques de Valenciennes, F-59313 Valenciennes Cedex 9, France

Received  August 2014 Revised  January 2015 Published  November 2015

We prove existence and uniqueness of classical solutions of the anisotropic prescribed mean curvature problem \begin{equation*} {\rm -div}\left({\nabla u}/{\sqrt{1 + |\nabla u|^2}}\right) = -au + {b}/{\sqrt{1 + |\nabla u|^2}}, \ \text{ in } B, \quad u=0, \ \text{ on } \partial B, \end{equation*} where $a,b>0$ are given parameters and $B$ is a ball in ${\mathbb R}^N$. The solution we find is positive, radially symmetric, radially decreasing and concave. This equation has been proposed as a model of the corneal shape in the recent papers [13,14,15,18,17], where however a linearized version of the equation has been investigated.
Citation: Chiara Corsato, Colette De Coster, Pierpaolo Omari. Radially symmetric solutions of an anisotropic mean curvature equation modeling the corneal shape. Conference Publications, 2015, 2015 (special) : 297-303. doi: 10.3934/proc.2015.0297
References:
[1]

Pacific J. Math. 243 (2009), 213-232.  Google Scholar

[2]

Pacific J. Math. 224 (2004), 201-229.  Google Scholar

[3]

Analysis (Munich) 28 (2008), 149-166.  Google Scholar

[4]

Differential Geom. Appl. 27 (2009), 335-343.  Google Scholar

[5]

J. Differential Equations 243 (2007), 208-237.  Google Scholar

[6]

Bound. Value Probl. 2014, 2014:127, 19 pp.. doi: 10.1186/1687-2770-2014-127.  Google Scholar

[7]

preprint (2015), 39 pp., doi: 10.13140/2.1.3837.7766. Available from: https://www.researchgate.net/publication/272826705. Google Scholar

[8]

J. Math. Fluid Mech. 3 (2001), 139-151.  Google Scholar

[9]

Mem. Differential Equations Math. Phys. 33 (2004), 47-55.  Google Scholar

[10]

J. Math. Fluid Mech. 9 (2007), 87-103.  Google Scholar

[11]

Math. Z. 264 (2010), 507-511.  Google Scholar

[12]

Discrete Contin. Dyn. Syst. 33 (2013), 305-320.  Google Scholar

[13]

Nonlinear Anal. Real World Appl. 13 (2012), 1498-1505.  Google Scholar

[14]

Appl. Math. Comput. 223 (2013), 436-443.  Google Scholar

[15]

Inverse Probl. Sci. Eng. 21 (2013), 1090-1097.  Google Scholar

[16]

Comput. Biol. Med. 53 (2014), 30-41. doi: 10.1016/j.compbiomed.2014.07.003.  Google Scholar

[17]

Inverse Probl. Sci. Eng. 23 (2015), 443-456.  Google Scholar

[18]

J. Math. Anal. Appl. 414 (2014), 461-471.  Google Scholar

show all references

References:
[1]

Pacific J. Math. 243 (2009), 213-232.  Google Scholar

[2]

Pacific J. Math. 224 (2004), 201-229.  Google Scholar

[3]

Analysis (Munich) 28 (2008), 149-166.  Google Scholar

[4]

Differential Geom. Appl. 27 (2009), 335-343.  Google Scholar

[5]

J. Differential Equations 243 (2007), 208-237.  Google Scholar

[6]

Bound. Value Probl. 2014, 2014:127, 19 pp.. doi: 10.1186/1687-2770-2014-127.  Google Scholar

[7]

preprint (2015), 39 pp., doi: 10.13140/2.1.3837.7766. Available from: https://www.researchgate.net/publication/272826705. Google Scholar

[8]

J. Math. Fluid Mech. 3 (2001), 139-151.  Google Scholar

[9]

Mem. Differential Equations Math. Phys. 33 (2004), 47-55.  Google Scholar

[10]

J. Math. Fluid Mech. 9 (2007), 87-103.  Google Scholar

[11]

Math. Z. 264 (2010), 507-511.  Google Scholar

[12]

Discrete Contin. Dyn. Syst. 33 (2013), 305-320.  Google Scholar

[13]

Nonlinear Anal. Real World Appl. 13 (2012), 1498-1505.  Google Scholar

[14]

Appl. Math. Comput. 223 (2013), 436-443.  Google Scholar

[15]

Inverse Probl. Sci. Eng. 21 (2013), 1090-1097.  Google Scholar

[16]

Comput. Biol. Med. 53 (2014), 30-41. doi: 10.1016/j.compbiomed.2014.07.003.  Google Scholar

[17]

Inverse Probl. Sci. Eng. 23 (2015), 443-456.  Google Scholar

[18]

J. Math. Anal. Appl. 414 (2014), 461-471.  Google Scholar

[1]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[2]

Annalisa Cesaroni, Valerio Pagliari. Convergence of nonlocal geometric flows to anisotropic mean curvature motion. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021065

[3]

Xinqun Mei, Jundong Zhou. The interior gradient estimate of prescribed Hessian quotient curvature equation in the hyperbolic space. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1187-1198. doi: 10.3934/cpaa.2021012

[4]

Mirela Kohr, Sergey E. Mikhailov, Wolfgang L. Wendland. Dirichlet and transmission problems for anisotropic stokes and Navier-Stokes systems with L tensor coefficient under relaxed ellipticity condition. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021042

[5]

Julian Tugaut. Captivity of the solution to the granular media equation. Kinetic & Related Models, 2021, 14 (2) : 199-209. doi: 10.3934/krm.2021002

[6]

Anderson L. A. de Araujo, Marcelo Montenegro. Existence of solution and asymptotic behavior for a class of parabolic equations. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1213-1227. doi: 10.3934/cpaa.2021017

[7]

Meng-Xue Chang, Bang-Sheng Han, Xiao-Ming Fan. Global dynamics of the solution for a bistable reaction diffusion equation with nonlocal effect. Electronic Research Archive, , () : -. doi: 10.3934/era.2021024

[8]

Zaihong Wang, Jin Li, Tiantian Ma. An erratum note on the paper: Positive periodic solution for Brillouin electron beam focusing system. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1995-1997. doi: 10.3934/dcdsb.2013.18.1995

[9]

Abderrazak Chrifi, Mostafa Abounouh, Hassan Al Moatassime. Galerkin method of weakly damped cubic nonlinear Schrödinger with Dirac impurity, and artificial boundary condition in a half-line. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021030

[10]

Changpin Li, Zhiqiang Li. Asymptotic behaviors of solution to partial differential equation with Caputo–Hadamard derivative and fractional Laplacian: Hyperbolic case. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021023

[11]

Manil T. Mohan, Arbaz Khan. On the generalized Burgers-Huxley equation: Existence, uniqueness, regularity, global attractors and numerical studies. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3943-3988. doi: 10.3934/dcdsb.2020270

[12]

Ka Luen Cheung, Man Chun Leung. Asymptotic behavior of positive solutions of the equation $ \Delta u + K u^{\frac{n+2}{n-2}} = 0$ in $IR^n$ and positive scalar curvature. Conference Publications, 2001, 2001 (Special) : 109-120. doi: 10.3934/proc.2001.2001.109

[13]

Zhengchao Ji. Cylindrical estimates for mean curvature flow in hyperbolic spaces. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1199-1211. doi: 10.3934/cpaa.2021016

[14]

José A. Carrillo, Bertram Düring, Lisa Maria Kreusser, Carola-Bibiane Schönlieb. Equilibria of an anisotropic nonlocal interaction equation: Analysis and numerics. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3985-4012. doi: 10.3934/dcds.2021025

[15]

Madalina Petcu, Roger Temam. The one dimensional shallow water equations with Dirichlet boundary conditions on the velocity. Discrete & Continuous Dynamical Systems - S, 2011, 4 (1) : 209-222. doi: 10.3934/dcdss.2011.4.209

[16]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[17]

Carmen Cortázar, M. García-Huidobro, Pilar Herreros, Satoshi Tanaka. On the uniqueness of solutions of a semilinear equation in an annulus. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021029

[18]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[19]

Feng Luo. A combinatorial curvature flow for compact 3-manifolds with boundary. Electronic Research Announcements, 2005, 11: 12-20.

[20]

Xin Zhong. Global strong solution and exponential decay for nonhomogeneous magnetohydrodynamic equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3563-3578. doi: 10.3934/dcdsb.2020246

 Impact Factor: 

Metrics

  • PDF downloads (100)
  • HTML views (0)
  • Cited by (0)

[Back to Top]