2015, 2015(special): 304-311. doi: 10.3934/proc.2015.0304

An equation unifying both Camassa-Holm and Novikov equations

1. 

Centro de Matemática, Computação e Cognição, Universidade Federal do ABC - UFABC, Rua Santa Adélia, 166, Bairro Bangu, 09.210 -- 170, Santo André, SP, Brazil, Brazil

Received  September 2014 Revised  January 2015 Published  November 2015

In this paper we derive a new equation unifying the Camassa-Holm and Novikov equations invariant under the scaling transformation $(x,t,u)\mapsto(x,\lambda^{-b}t,\lambda u)$ and admitting a certain multiplier.
Citation: Priscila Leal da Silva, Igor Leite Freire. An equation unifying both Camassa-Holm and Novikov equations. Conference Publications, 2015, 2015 (special) : 304-311. doi: 10.3934/proc.2015.0304
References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering,, Cambridge University Press, (1991).

[2]

S. C. Anco and G. Bluman, Direct construction of conservation laws from field equations,, Phys. Rev. Lett., 78 (1987), 2869.

[3]

S. C. Anco, and G. Bluman, Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications,, European J. Appl. Math., 13 (2002), 545.

[4]

S. C. Anco, and G. Bluman, Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications,, European J. Appl. Math., 13 (2002), 566.

[5]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philos. Trans. Roy. Soc. London, 272 (1972), 47.

[6]

G. Bluman, A. Cheviakov and S. Anco, Applications of symmetry methods to partial differential equations,, Springer, (2010).

[7]

G. W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations,, Springer, (2002).

[8]

G. W. Bluman and S. Kumei, Symmetries and Differential Equations,, Applied Mathematical Sciences, 81 (1989).

[9]

Y. Bozhkov, I. L. Freire and N. H. Ibragimov, Group analysis of the Novikov equation,, Comp. Appl. Math., 33 (2014), 193.

[10]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.

[11]

P. A. Clarkson, E. L. Mansfield and T. J. Priestley, Symmetries of a class of nonlinear third-order partial differential equations,, Math. Comput. Modelling., 25 (1997), 195.

[12]

P. L. da Silva and I. L. Freire, Strict self-adjointness and shallow water models,, (2013) , (2013).

[13]

P. L. da Silva and I. L. Freire, On certain shallow water models, scaling invariance and strict self-adjointness, (work presented in the CNMAC-Brazil),, Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, (2015).

[14]

P. L. da Silva and I. L. Freire, On the group analysis of a modified Novikov equation,, in Interdisciplinary Topics in Applied Mathematics, 117 (2015), 161.

[15]

A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions,, Theor. Math. Phys., 133 (2002), 1463.

[16]

R. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion,, Phys. Rev. Lett., 87 (2001).

[17]

H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves,, Fluid Dynamics Research, 333 (2003), 73.

[18]

A. N. W. Hone and J. P, Wang, Integrable peak on equations with cubic nonlinearities,, J. Phys. A: Math. Theor., 41 (2008).

[19]

C. S. Gardner, Kortewerg-de Vries equation and generalizations IV. The Korteweg-de Vries equation as a Hamiltonian system,, J. Math. Phys., 12 (1971), 1548.

[20]

N. H. Ibragimov, Transformation groups applied to mathematical physics,, Translated from the Russian Mathematics and its Applications (Soviet Series), (1985).

[21]

N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations,, John Wiley and Sons, (1999).

[22]

N. H. Ibragimov, A new conservation theorem,, J. Math. Anal. Appl., 333 (2007), 311.

[23]

N. H. Ibragimov, R.S. Khamitova, A. Valenti, Self-adjointness of a generalized Camassa-Holm equation,, Appl. Math. Comp., 218 (2011), 2579.

[24]

N. H. Ibragimov, Nonlinear self-adjointness and conservation laws,, J. Phys. A: Math. Theor., 44 (2011).

[25]

N. H. Ibragimov, Nonlinear self-adjointness in constructing conservation laws,, Archives of ALGA, 7/8 (2011), 1.

[26]

N. M. Ivanova and R. O. Popovych, Equivalence of conservation laws and equivalence of potential systems,, Int. J. Theor. Phys., 46 (2007), 2658.

[27]

Y. Mi, C. Mu, On the Cauchy problem for the modified Novikov equation with peakon solutions,, J. Diff. Equ., 254 (2013), 961.

[28]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,, Phil. Mag., 39 (1895), 422.

[29]

M. D. Kruskal, R. M. Miura, C. S. Gardner and N. J. Zabusky, Korteweg-de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws,, J. Math. Phys., 11 (1970), 952.

[30]

R. M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation,, J. Math. Phys., 9 (1968), 1202.

[31]

R. M. Miura, C. S. Gardner and M. D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion,, J. Math. Phys., 9 (1968), 1204.

[32]

V. S. Novikov, Generalizations of the Camassa-Holm equation,, J. Phys. A: Math. Theor., 42 (2009).

[33]

P. J. Olver, Euler operators and conservation laws of the BBM equation,, Math. Proc. Cambridge Phils. Soc., 85 (1979), 143.

[34]

P. J. Olver, Conservation laws and null divergences,, Math. Proc. Camb. Phil. Soc., 94 (1983), 529.

[35]

P. J. Olver, Conservation laws of free boundary problems and the classification of conservation laws for water waves,, Trans. Amer. Math. Soc., 277 (1983), 353.

[36]

P. J. Olver, Applications of Lie groups to differential equations,, Springer, (1986).

[37]

R. O. Popovych and N. Ivanova, Hierarchy of conservation laws of diffusion-convection equations,, J. Math. Phys., 46 (2005).

[38]

R. O. Popovych and A. M. Samoilenko, Local conservation laws of second-order evolution equations,, J. Phys. A, 41 (2008).

[39]

R. O. Popovych and A. Sergyeyev, Conservation laws and normal forms of evolution equations,, Phys. Lett. A, 374 (2010), 2210.

[40]

A. M. Vinogradov, Local symmetries and conservation laws,, Acta Appl. Math., 2 (1984), 21.

show all references

References:
[1]

M. J. Ablowitz and P. A. Clarkson, Solitons, nonlinear evolution equations and inverse scattering,, Cambridge University Press, (1991).

[2]

S. C. Anco and G. Bluman, Direct construction of conservation laws from field equations,, Phys. Rev. Lett., 78 (1987), 2869.

[3]

S. C. Anco, and G. Bluman, Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications,, European J. Appl. Math., 13 (2002), 545.

[4]

S. C. Anco, and G. Bluman, Direct construction method for conservation laws of partial differential equations. I. Examples of conservation law classifications,, European J. Appl. Math., 13 (2002), 566.

[5]

T. B. Benjamin, J. L. Bona and J. J. Mahony, Model equations for long waves in nonlinear dispersive systems,, Philos. Trans. Roy. Soc. London, 272 (1972), 47.

[6]

G. Bluman, A. Cheviakov and S. Anco, Applications of symmetry methods to partial differential equations,, Springer, (2010).

[7]

G. W. Bluman and S. Anco, Symmetry and Integration Methods for Differential Equations,, Springer, (2002).

[8]

G. W. Bluman and S. Kumei, Symmetries and Differential Equations,, Applied Mathematical Sciences, 81 (1989).

[9]

Y. Bozhkov, I. L. Freire and N. H. Ibragimov, Group analysis of the Novikov equation,, Comp. Appl. Math., 33 (2014), 193.

[10]

R. Camassa and D. D. Holm, An integrable shallow water equation with peaked solitons,, Phys. Rev. Lett., 71 (1993), 1661.

[11]

P. A. Clarkson, E. L. Mansfield and T. J. Priestley, Symmetries of a class of nonlinear third-order partial differential equations,, Math. Comput. Modelling., 25 (1997), 195.

[12]

P. L. da Silva and I. L. Freire, Strict self-adjointness and shallow water models,, (2013) , (2013).

[13]

P. L. da Silva and I. L. Freire, On certain shallow water models, scaling invariance and strict self-adjointness, (work presented in the CNMAC-Brazil),, Proceeding Series of the Brazilian Society of Computational and Applied Mathematics, (2015).

[14]

P. L. da Silva and I. L. Freire, On the group analysis of a modified Novikov equation,, in Interdisciplinary Topics in Applied Mathematics, 117 (2015), 161.

[15]

A. Degasperis, D. D. Holm and A. N. W. Hone, A new integrable equation with peakon solutions,, Theor. Math. Phys., 133 (2002), 1463.

[16]

R. R. Dullin, G. A. Gottwald and D. D. Holm, An integrable shallow water equation with linear and nonlinear dispersion,, Phys. Rev. Lett., 87 (2001).

[17]

H. R. Dullin, G. A. Gottwald and D. D. Holm, Camassa-Holm, Korteweg-de Vries-5 and other asymptotically equivalent equations for shallow water waves,, Fluid Dynamics Research, 333 (2003), 73.

[18]

A. N. W. Hone and J. P, Wang, Integrable peak on equations with cubic nonlinearities,, J. Phys. A: Math. Theor., 41 (2008).

[19]

C. S. Gardner, Kortewerg-de Vries equation and generalizations IV. The Korteweg-de Vries equation as a Hamiltonian system,, J. Math. Phys., 12 (1971), 1548.

[20]

N. H. Ibragimov, Transformation groups applied to mathematical physics,, Translated from the Russian Mathematics and its Applications (Soviet Series), (1985).

[21]

N. H. Ibragimov, Elementary Lie Group Analysis and Ordinary Differential Equations,, John Wiley and Sons, (1999).

[22]

N. H. Ibragimov, A new conservation theorem,, J. Math. Anal. Appl., 333 (2007), 311.

[23]

N. H. Ibragimov, R.S. Khamitova, A. Valenti, Self-adjointness of a generalized Camassa-Holm equation,, Appl. Math. Comp., 218 (2011), 2579.

[24]

N. H. Ibragimov, Nonlinear self-adjointness and conservation laws,, J. Phys. A: Math. Theor., 44 (2011).

[25]

N. H. Ibragimov, Nonlinear self-adjointness in constructing conservation laws,, Archives of ALGA, 7/8 (2011), 1.

[26]

N. M. Ivanova and R. O. Popovych, Equivalence of conservation laws and equivalence of potential systems,, Int. J. Theor. Phys., 46 (2007), 2658.

[27]

Y. Mi, C. Mu, On the Cauchy problem for the modified Novikov equation with peakon solutions,, J. Diff. Equ., 254 (2013), 961.

[28]

D. J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves,, Phil. Mag., 39 (1895), 422.

[29]

M. D. Kruskal, R. M. Miura, C. S. Gardner and N. J. Zabusky, Korteweg-de Vries equation and generalizations. V. Uniqueness and nonexistence of polynomial conservation laws,, J. Math. Phys., 11 (1970), 952.

[30]

R. M. Miura, Korteweg-de Vries equation and generalizations. I. A remarkable explicit nonlinear transformation,, J. Math. Phys., 9 (1968), 1202.

[31]

R. M. Miura, C. S. Gardner and M. D. Kruskal, Korteweg-de Vries equation and generalizations. II. Existence of conservation laws and constants of motion,, J. Math. Phys., 9 (1968), 1204.

[32]

V. S. Novikov, Generalizations of the Camassa-Holm equation,, J. Phys. A: Math. Theor., 42 (2009).

[33]

P. J. Olver, Euler operators and conservation laws of the BBM equation,, Math. Proc. Cambridge Phils. Soc., 85 (1979), 143.

[34]

P. J. Olver, Conservation laws and null divergences,, Math. Proc. Camb. Phil. Soc., 94 (1983), 529.

[35]

P. J. Olver, Conservation laws of free boundary problems and the classification of conservation laws for water waves,, Trans. Amer. Math. Soc., 277 (1983), 353.

[36]

P. J. Olver, Applications of Lie groups to differential equations,, Springer, (1986).

[37]

R. O. Popovych and N. Ivanova, Hierarchy of conservation laws of diffusion-convection equations,, J. Math. Phys., 46 (2005).

[38]

R. O. Popovych and A. M. Samoilenko, Local conservation laws of second-order evolution equations,, J. Phys. A, 41 (2008).

[39]

R. O. Popovych and A. Sergyeyev, Conservation laws and normal forms of evolution equations,, Phys. Lett. A, 374 (2010), 2210.

[40]

A. M. Vinogradov, Local symmetries and conservation laws,, Acta Appl. Math., 2 (1984), 21.

[1]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[2]

Marianna Euler, Norbert Euler. Integrating factors and conservation laws for some Camassa-Holm type equations. Communications on Pure & Applied Analysis, 2012, 11 (4) : 1421-1430. doi: 10.3934/cpaa.2012.11.1421

[3]

Giuseppe Maria Coclite, Lorenzo Di Ruvo. A note on the convergence of the solution of the high order Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1247-1282. doi: 10.3934/dcds.2017052

[4]

Giuseppe Maria Coclite, Lorenzo di Ruvo. A note on the convergence of the solutions of the Camassa-Holm equation to the entropy ones of a scalar conservation law. Discrete & Continuous Dynamical Systems - A, 2016, 36 (6) : 2981-2990. doi: 10.3934/dcds.2016.36.2981

[5]

Yongsheng Mi, Boling Guo, Chunlai Mu. On an $N$-Component Camassa-Holm equation with peakons. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1575-1601. doi: 10.3934/dcds.2017065

[6]

Helge Holden, Xavier Raynaud. Dissipative solutions for the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1047-1112. doi: 10.3934/dcds.2009.24.1047

[7]

Zhenhua Guo, Mina Jiang, Zhian Wang, Gao-Feng Zheng. Global weak solutions to the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2008, 21 (3) : 883-906. doi: 10.3934/dcds.2008.21.883

[8]

Milena Stanislavova, Atanas Stefanov. Attractors for the viscous Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2007, 18 (1) : 159-186. doi: 10.3934/dcds.2007.18.159

[9]

Defu Chen, Yongsheng Li, Wei Yan. On the Cauchy problem for a generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2015, 35 (3) : 871-889. doi: 10.3934/dcds.2015.35.871

[10]

Yu Gao, Jian-Guo Liu. The modified Camassa-Holm equation in Lagrangian coordinates. Discrete & Continuous Dynamical Systems - B, 2018, 23 (6) : 2545-2592. doi: 10.3934/dcdsb.2018067

[11]

Xi Tu, Zhaoyang Yin. Local well-posedness and blow-up phenomena for a generalized Camassa-Holm equation with peakon solutions. Discrete & Continuous Dynamical Systems - A, 2016, 36 (5) : 2781-2801. doi: 10.3934/dcds.2016.36.2781

[12]

Stephen C. Anco, Elena Recio, María L. Gandarias, María S. Bruzón. A nonlinear generalization of the Camassa-Holm equation with peakon solutions. Conference Publications, 2015, 2015 (special) : 29-37. doi: 10.3934/proc.2015.0029

[13]

Li Yang, Zeng Rong, Shouming Zhou, Chunlai Mu. Uniqueness of conservative solutions to the generalized Camassa-Holm equation via characteristics. Discrete & Continuous Dynamical Systems - A, 2018, 38 (10) : 5205-5220. doi: 10.3934/dcds.2018230

[14]

Yongsheng Mi, Chunlai Mu. On a three-Component Camassa-Holm equation with peakons. Kinetic & Related Models, 2014, 7 (2) : 305-339. doi: 10.3934/krm.2014.7.305

[15]

Shouming Zhou, Chunlai Mu. Global conservative and dissipative solutions of the generalized Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2013, 33 (4) : 1713-1739. doi: 10.3934/dcds.2013.33.1713

[16]

Shihui Zhu. Existence and uniqueness of global weak solutions of the Camassa-Holm equation with a forcing. Discrete & Continuous Dynamical Systems - A, 2016, 36 (9) : 5201-5221. doi: 10.3934/dcds.2016026

[17]

Feng Wang, Fengquan Li, Zhijun Qiao. On the Cauchy problem for a higher-order μ-Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (8) : 4163-4187. doi: 10.3934/dcds.2018181

[18]

Danping Ding, Lixin Tian, Gang Xu. The study on solutions to Camassa-Holm equation with weak dissipation. Communications on Pure & Applied Analysis, 2006, 5 (3) : 483-492. doi: 10.3934/cpaa.2006.5.483

[19]

Stephen Anco, Daniel Kraus. Hamiltonian structure of peakons as weak solutions for the modified Camassa-Holm equation. Discrete & Continuous Dynamical Systems - A, 2018, 38 (9) : 4449-4465. doi: 10.3934/dcds.2018194

[20]

David F. Parker. Higher-order shallow water equations and the Camassa-Holm equation. Discrete & Continuous Dynamical Systems - B, 2007, 7 (3) : 629-641. doi: 10.3934/dcdsb.2007.7.629

 Impact Factor: 

Metrics

  • PDF downloads (22)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]