2015, 2015(special): 320-329. doi: 10.3934/proc.2015.0320

A note on a weakly coupled system of structurally damped waves

1. 

Departamento de Computação e Matemática, Universidade de São Paulo (USP), FFCLRP, Av. dos Bandeirantes 3900, Ribeirão Preto, SP 14040-901

Received  September 2014 Revised  June 2015 Published  November 2015

In this note, we find the critical exponent for a system of weakly coupled structurally damped waves.
Citation: Marcello D'Abbicco. A note on a weakly coupled system of structurally damped waves. Conference Publications, 2015, 2015 (special) : 320-329. doi: 10.3934/proc.2015.0320
References:
[1]

P. Biler, Time decay of solutions of semilinear strongly damped generalized wave equations,, Math. Methods Appl. Sci. 14 (1991), 14 (1991), 427.   Google Scholar

[2]

R. C. Charão, C. R. da Luz and R. Ikehata, Sharp Decay Rates for Wave Equations with a Fractional Damping via New Method in the Fourier Space,, Journal of Math. Anal. and Appl. 408 (2013), 408 (2013), 247.   Google Scholar

[3]

A. Córdoba and D. Córdoba, A Maximum Principle Applied to Quasi-Geostrophic Equations,, Commun. Math. Phys. 249 (2004), 249 (2004), 511.   Google Scholar

[4]

P. T. Duong, M. Kainane and M. Reissig, Global existence for semi-linear structurally damped $\sigma$-evolution models,, J. Math. Anal. Appl. 431 (2015), 431 (2015), 569.   Google Scholar

[5]

M. D'Abbicco, The influence of a nonlinear memory on the damped wave equation,, Nonlinear Analysis, 95 (2014), 130.   Google Scholar

[6]

M. D'Abbicco, A wave equation with structural damping and nonlinear memory,, Nonlinear Differential Equations and Applications, 21 (2014), 751.   Google Scholar

[7]

M. D'Abbicco, A benefit from the $L^1$ smallness of initial data for the semilinear wave equation with structural damping,, Current Trends in Analysis and its Applications, (2015), 209.   Google Scholar

[8]

M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^p-L^q$ framework,, J. of Differential Equations, 256 (2014), 2307.   Google Scholar

[9]

M. D'Abbicco and M. R. Ebert, An application of $L^p-L^q$ decay estimates to the semilinear wave equation with parabolic-like structural damping,, Nonlinear Analysis, 99 (2014), 16.   Google Scholar

[10]

M. D'Abbicco and M. Reissig, Semilinear structural damped waves,, Math. Methods in Appl. Sc., 37 (2014), 1570.   Google Scholar

[11]

R. Ikehata and M. Natsume, Energy Decay Estimates for Wave Equations with a Fractional Damping,, Differential and Integral Equations, 25 (2012), 9.   Google Scholar

[12]

R. Ikehata, K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $R^N$ with noncompactly supported initial data,, Nonlinear Analysis, 61 (2005), 1189.   Google Scholar

[13]

T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations,, Commun. Pure Appl. Math., 33 (1980), 501.   Google Scholar

[14]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. RIMS., 12 (1976), 169.   Google Scholar

[15]

T. Narazaki and M. Reissig, $L^1$ estimates for oscillating integrals related to structural damped wave models,, Studies in Phase Space Analysis with Applications to PDEs, (2013), 215.   Google Scholar

[16]

K. Nishihara, Asymptotic behavior of solutions for a system of semilinear heat equations and the corresponding damped wave system,, Osaka Journal of Mathematics, 49 (2012), 331.   Google Scholar

[17]

K. Nishihara and Y. Wakasugi, Critical exponent for the Cauchy problem to the weakly coupled damped wave systems,, Nonlinear Analysis, 108 (2014), 249.   Google Scholar

[18]

G. Todorova and B. Yordanov, Critical Exponent for a Nonlinear Wave Equation with Damping,, Journal of Differential Equations, 174 (2001), 464.   Google Scholar

[19]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case,, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 109.   Google Scholar

show all references

References:
[1]

P. Biler, Time decay of solutions of semilinear strongly damped generalized wave equations,, Math. Methods Appl. Sci. 14 (1991), 14 (1991), 427.   Google Scholar

[2]

R. C. Charão, C. R. da Luz and R. Ikehata, Sharp Decay Rates for Wave Equations with a Fractional Damping via New Method in the Fourier Space,, Journal of Math. Anal. and Appl. 408 (2013), 408 (2013), 247.   Google Scholar

[3]

A. Córdoba and D. Córdoba, A Maximum Principle Applied to Quasi-Geostrophic Equations,, Commun. Math. Phys. 249 (2004), 249 (2004), 511.   Google Scholar

[4]

P. T. Duong, M. Kainane and M. Reissig, Global existence for semi-linear structurally damped $\sigma$-evolution models,, J. Math. Anal. Appl. 431 (2015), 431 (2015), 569.   Google Scholar

[5]

M. D'Abbicco, The influence of a nonlinear memory on the damped wave equation,, Nonlinear Analysis, 95 (2014), 130.   Google Scholar

[6]

M. D'Abbicco, A wave equation with structural damping and nonlinear memory,, Nonlinear Differential Equations and Applications, 21 (2014), 751.   Google Scholar

[7]

M. D'Abbicco, A benefit from the $L^1$ smallness of initial data for the semilinear wave equation with structural damping,, Current Trends in Analysis and its Applications, (2015), 209.   Google Scholar

[8]

M. D'Abbicco and M. R. Ebert, Diffusion phenomena for the wave equation with structural damping in the $L^p-L^q$ framework,, J. of Differential Equations, 256 (2014), 2307.   Google Scholar

[9]

M. D'Abbicco and M. R. Ebert, An application of $L^p-L^q$ decay estimates to the semilinear wave equation with parabolic-like structural damping,, Nonlinear Analysis, 99 (2014), 16.   Google Scholar

[10]

M. D'Abbicco and M. Reissig, Semilinear structural damped waves,, Math. Methods in Appl. Sc., 37 (2014), 1570.   Google Scholar

[11]

R. Ikehata and M. Natsume, Energy Decay Estimates for Wave Equations with a Fractional Damping,, Differential and Integral Equations, 25 (2012), 9.   Google Scholar

[12]

R. Ikehata, K. Tanizawa, Global existence of solutions for semilinear damped wave equations in $R^N$ with noncompactly supported initial data,, Nonlinear Analysis, 61 (2005), 1189.   Google Scholar

[13]

T. Kato, Blow-up of solutions of some nonlinear hyperbolic equations,, Commun. Pure Appl. Math., 33 (1980), 501.   Google Scholar

[14]

A. Matsumura, On the asymptotic behavior of solutions of semi-linear wave equations,, Publ. RIMS., 12 (1976), 169.   Google Scholar

[15]

T. Narazaki and M. Reissig, $L^1$ estimates for oscillating integrals related to structural damped wave models,, Studies in Phase Space Analysis with Applications to PDEs, (2013), 215.   Google Scholar

[16]

K. Nishihara, Asymptotic behavior of solutions for a system of semilinear heat equations and the corresponding damped wave system,, Osaka Journal of Mathematics, 49 (2012), 331.   Google Scholar

[17]

K. Nishihara and Y. Wakasugi, Critical exponent for the Cauchy problem to the weakly coupled damped wave systems,, Nonlinear Analysis, 108 (2014), 249.   Google Scholar

[18]

G. Todorova and B. Yordanov, Critical Exponent for a Nonlinear Wave Equation with Damping,, Journal of Differential Equations, 174 (2001), 464.   Google Scholar

[19]

Q. S. Zhang, A blow-up result for a nonlinear wave equation with damping: the critical case,, C. R. Acad. Sci. Paris Sér. I Math., 333 (2001), 109.   Google Scholar

[1]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[2]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[3]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[4]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[5]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[6]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[7]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[8]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[9]

Kai Yang. Scattering of the focusing energy-critical NLS with inverse square potential in the radial case. Communications on Pure & Applied Analysis, 2021, 20 (1) : 77-99. doi: 10.3934/cpaa.2020258

[10]

Shengbing Deng, Tingxi Hu, Chun-Lei Tang. $ N- $Laplacian problems with critical double exponential nonlinearities. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 987-1003. doi: 10.3934/dcds.2020306

[11]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[12]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[13]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[14]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[15]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[16]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[17]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[18]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[19]

Simon Hochgerner. Symmetry actuated closed-loop Hamiltonian systems. Journal of Geometric Mechanics, 2020, 12 (4) : 641-669. doi: 10.3934/jgm.2020030

[20]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

 Impact Factor: 

Metrics

  • PDF downloads (125)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]