2015, 2015(special): 340-348. doi: 10.3934/proc.2015.0340

Bifurcation without parameters in circuits with memristors: A DAE approach

1. 

Depto. Matemática Aplicada a las Tecnologías de la Información, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n - 28040 Madrid, Spain, Spain

Received  September 2014 Revised  August 2015 Published  November 2015

Bifurcations without parameters describe qualitative changes in the local dynamics of nonlinear ODEs when normal hyperbolicity of a manifold of equilibria fails. Non-isolated equilibrium points are systematically exhibited by nonlinear circuits with memristors; a memristor is a nonlinear device recently introduced in circuit theory and which is expected to play a key role in electronics in the near future. In this communication we provide a graph-theoretic analysis of the transcritical bifurcation without parameters in memristive circuits, owing to the presence of a locally active memristor. The results are crucially based on the use of differential-algebraic circuit models.
Citation: Ignacio García de la Vega, Ricardo Riaza. Bifurcation without parameters in circuits with memristors: A DAE approach. Conference Publications, 2015, 2015 (special) : 340-348. doi: 10.3934/proc.2015.0340
References:
[1]

B. Andrásfai, Introductory Graph Theory, Akadémiai Kiadó, Budapest, 1977.

[2]

B. Andrásfai, Graph Theory: Flows, Matrices, Adam Hilger, 1991.

[3]

A. Ascoli, T. Schmidt, R. Tetzlaff and F. Corinto, Application of the Volterra series paradigm to memristive systems, in R. Tetzlaff (ed.), Memristors and Memristive Systems, pp. 163-191, Springer, 2014.

[4]

B. Bao, Z. Ma, J. Xu, Z. Liu and Q. Xu, A simple memristor chaotic circuit with complex dynamics, Internat. J. Bifurcation and Chaos, 21 (2011), 2629-2645.

[5]

D. Biolek, Z. Biolek and V. Biolkova, SPICE modeling of memristive, memcapacitive and meminductive systems, Proc. Eur. Conf. Circuit Theor. Design 2009, (2009) 249-252.

[6]

B. Bollobás, Modern Graph Theory, Springer-Verlag, 1998.

[7]

L. O. Chua, Memristor - The missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507-519.

[8]

L. O. Chua, C. A. Desoer and E. S. Kuh, Linear and Nonlinear Circuits, McGraw-Hill, 1987.

[9]

F. Corinto, A. Ascoli and M. Gilli, Analysis of current-voltage characteristics for memristive elements in pattern recognition systems, Internat. J. Circuit Theory Appl., 40 (2012), 1277-1320.

[10]

M. Di Ventra, Y. V. Pershin and L. O. Chua, Circuit elements with memory: memristors, memcapacitors and meminductors, Proc. IEEE, 97 (2009), 1717-1724.

[11]

B. Fiedler, S. Liebscher, and J. C. Alexander, Generic Hopf bifurcation from lines of equilibria without parameters: I. Theory, J. Differential Equations, 167 (2000), 16-35.

[12]

B. Fiedler and S. Liebscher, Generic Hopf bifurcation from lines of equilibria without parameters: II. Systems of viscous hyperbolic balance laws, SIAM J. Math. Anal., 31 (2000), 1396-1404.

[13]

B. Fiedler, S. Liebscher, and J. C. Alexander, Generic Hopf bifurcation from lines of equilibria without parameters: III. Binary oscillations, Internat. J. Bifur. Chaos, 10 (2000), 1613-1622.

[14]

M. Itoh and L. O. Chua, Memristor oscillators, Internat. J. Bifur. Chaos, 18 (2008), 3183-3206.

[15]

M. Itoh and L. O. Chua, Memristor Hamiltonian circuits, Internat. J. Bifur. Chaos, 21 (2011), 2395-2425.

[16]

L. Jansen, M. Matthes and C. Tischendorf, Global unique solvability for memristive circuit DAEs of index 1, Int. J. Circuit Theory Appl., in press, 2014.

[17]

D. Jeltsema and A. Doria-Cerezo, Port-Hamiltonian formulation of systems with memory, Proc. IEEE, 100 (2012), 1928-1937.

[18]

O. Kavehei, A. Iqbal, Y. S. Kim, K. Eshraghian, S. F. Al-Sarawi and D. Abbott, The fourth element: characteristics, modelling and electromagnetic theory of the memristor, Proc. R. Soc. A, 466 (2010), 2175-2202.

[19]

M. Messias, C. Nespoli and V. A. Botta, Hopf bifurcation from lines of equilibria without parameters in memristors oscillators, Internat. J. Bifur. Chaos, 20 (2010), 437-450.

[20]

B. Muthuswamy and L. O. Chua, Simplest chaotic circuit, Internat. J. Bifur. Chaos, 20 (2010), 1567-1580.

[21]

Y. V. Pershin and M. Di Ventra, Neuromorphic, digital and quantum computation with memory circuit elements, Proc. IEEE, 100 (2012), 2071-2080.

[22]

Y. V. Pershin and M. Di Ventra, Memory effects in complex materials and nanoscale systems, Advances in Physics, 60 (2011), 145-227.

[23]

R. Riaza, Differential-Algebraic Systems, World Scientific, 2008.

[24]

R. Riaza, Nondegeneracy conditions for active memristive circuits, IEEE Trans. Circuits and Systems - II, 57 (2010), 223-227.

[25]

R. Riaza, Manifolds of equilibria and bifurcations without parameters in memristive circuits, SIAM J. Appl. Math., 72 (2012), 877-896.

[26]

D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, The missing memristor found, Nature, 453 (2008), 80-83.

[27]

C. Tischendorf, Coupled systems of differential algebraic and partial differential equations in circuit and device simulation. Modeling and numerical analysis, Habilitationsschrift, Inst. Math., Humboldt University, Berlin, 2003.

show all references

References:
[1]

B. Andrásfai, Introductory Graph Theory, Akadémiai Kiadó, Budapest, 1977.

[2]

B. Andrásfai, Graph Theory: Flows, Matrices, Adam Hilger, 1991.

[3]

A. Ascoli, T. Schmidt, R. Tetzlaff and F. Corinto, Application of the Volterra series paradigm to memristive systems, in R. Tetzlaff (ed.), Memristors and Memristive Systems, pp. 163-191, Springer, 2014.

[4]

B. Bao, Z. Ma, J. Xu, Z. Liu and Q. Xu, A simple memristor chaotic circuit with complex dynamics, Internat. J. Bifurcation and Chaos, 21 (2011), 2629-2645.

[5]

D. Biolek, Z. Biolek and V. Biolkova, SPICE modeling of memristive, memcapacitive and meminductive systems, Proc. Eur. Conf. Circuit Theor. Design 2009, (2009) 249-252.

[6]

B. Bollobás, Modern Graph Theory, Springer-Verlag, 1998.

[7]

L. O. Chua, Memristor - The missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507-519.

[8]

L. O. Chua, C. A. Desoer and E. S. Kuh, Linear and Nonlinear Circuits, McGraw-Hill, 1987.

[9]

F. Corinto, A. Ascoli and M. Gilli, Analysis of current-voltage characteristics for memristive elements in pattern recognition systems, Internat. J. Circuit Theory Appl., 40 (2012), 1277-1320.

[10]

M. Di Ventra, Y. V. Pershin and L. O. Chua, Circuit elements with memory: memristors, memcapacitors and meminductors, Proc. IEEE, 97 (2009), 1717-1724.

[11]

B. Fiedler, S. Liebscher, and J. C. Alexander, Generic Hopf bifurcation from lines of equilibria without parameters: I. Theory, J. Differential Equations, 167 (2000), 16-35.

[12]

B. Fiedler and S. Liebscher, Generic Hopf bifurcation from lines of equilibria without parameters: II. Systems of viscous hyperbolic balance laws, SIAM J. Math. Anal., 31 (2000), 1396-1404.

[13]

B. Fiedler, S. Liebscher, and J. C. Alexander, Generic Hopf bifurcation from lines of equilibria without parameters: III. Binary oscillations, Internat. J. Bifur. Chaos, 10 (2000), 1613-1622.

[14]

M. Itoh and L. O. Chua, Memristor oscillators, Internat. J. Bifur. Chaos, 18 (2008), 3183-3206.

[15]

M. Itoh and L. O. Chua, Memristor Hamiltonian circuits, Internat. J. Bifur. Chaos, 21 (2011), 2395-2425.

[16]

L. Jansen, M. Matthes and C. Tischendorf, Global unique solvability for memristive circuit DAEs of index 1, Int. J. Circuit Theory Appl., in press, 2014.

[17]

D. Jeltsema and A. Doria-Cerezo, Port-Hamiltonian formulation of systems with memory, Proc. IEEE, 100 (2012), 1928-1937.

[18]

O. Kavehei, A. Iqbal, Y. S. Kim, K. Eshraghian, S. F. Al-Sarawi and D. Abbott, The fourth element: characteristics, modelling and electromagnetic theory of the memristor, Proc. R. Soc. A, 466 (2010), 2175-2202.

[19]

M. Messias, C. Nespoli and V. A. Botta, Hopf bifurcation from lines of equilibria without parameters in memristors oscillators, Internat. J. Bifur. Chaos, 20 (2010), 437-450.

[20]

B. Muthuswamy and L. O. Chua, Simplest chaotic circuit, Internat. J. Bifur. Chaos, 20 (2010), 1567-1580.

[21]

Y. V. Pershin and M. Di Ventra, Neuromorphic, digital and quantum computation with memory circuit elements, Proc. IEEE, 100 (2012), 2071-2080.

[22]

Y. V. Pershin and M. Di Ventra, Memory effects in complex materials and nanoscale systems, Advances in Physics, 60 (2011), 145-227.

[23]

R. Riaza, Differential-Algebraic Systems, World Scientific, 2008.

[24]

R. Riaza, Nondegeneracy conditions for active memristive circuits, IEEE Trans. Circuits and Systems - II, 57 (2010), 223-227.

[25]

R. Riaza, Manifolds of equilibria and bifurcations without parameters in memristive circuits, SIAM J. Appl. Math., 72 (2012), 877-896.

[26]

D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, The missing memristor found, Nature, 453 (2008), 80-83.

[27]

C. Tischendorf, Coupled systems of differential algebraic and partial differential equations in circuit and device simulation. Modeling and numerical analysis, Habilitationsschrift, Inst. Math., Humboldt University, Berlin, 2003.

[1]

Kie Van Ivanky Saputra, Lennaert van Veen, Gilles Reinout Willem Quispel. The saddle-node-transcritical bifurcation in a population model with constant rate harvesting. Discrete and Continuous Dynamical Systems - B, 2010, 14 (1) : 233-250. doi: 10.3934/dcdsb.2010.14.233

[2]

Russell Johnson, Francesca Mantellini. A nonautonomous transcritical bifurcation problem with an application to quasi-periodic bubbles. Discrete and Continuous Dynamical Systems, 2003, 9 (1) : 209-224. doi: 10.3934/dcds.2003.9.209

[3]

Brigita Ferčec, Valery G. Romanovski, Yilei Tang, Ling Zhang. Integrability and bifurcation of a three-dimensional circuit differential system. Discrete and Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021243

[4]

Benjamin Boutin, Frédéric Coquel, Philippe G. LeFloch. Coupling techniques for nonlinear hyperbolic equations. Ⅱ. resonant interfaces with internal structure. Networks and Heterogeneous Media, 2021, 16 (2) : 283-315. doi: 10.3934/nhm.2021007

[5]

Jean Ginibre, Giorgio Velo. Modified wave operators without loss of regularity for some long range Hartree equations. II. Communications on Pure and Applied Analysis, 2015, 14 (4) : 1357-1376. doi: 10.3934/cpaa.2015.14.1357

[6]

Alexander Krasnosel'skii, Alexei Pokrovskii. On subharmonics bifurcation in equations with homogeneous nonlinearities. Discrete and Continuous Dynamical Systems, 2001, 7 (4) : 747-762. doi: 10.3934/dcds.2001.7.747

[7]

Michael E. Filippakis, Donal O'Regan, Nikolaos S. Papageorgiou. Positive solutions and bifurcation phenomena for nonlinear elliptic equations of logistic type: The superdiffusive case. Communications on Pure and Applied Analysis, 2010, 9 (6) : 1507-1527. doi: 10.3934/cpaa.2010.9.1507

[8]

Jeremy L. Marzuola, Michael I. Weinstein. Long time dynamics near the symmetry breaking bifurcation for nonlinear Schrödinger/Gross-Pitaevskii equations. Discrete and Continuous Dynamical Systems, 2010, 28 (4) : 1505-1554. doi: 10.3934/dcds.2010.28.1505

[9]

Mohan Mallick, Sarath Sasi, R. Shivaji, S. Sundar. Bifurcation, uniqueness and multiplicity results for classes of reaction diffusion equations arising in ecology with nonlinear boundary conditions. Communications on Pure and Applied Analysis, 2022, 21 (2) : 705-726. doi: 10.3934/cpaa.2021195

[10]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[11]

Mudassar Imran, Youssef Raffoul, Muhammad Usman, Chi Zhang. A study of bifurcation parameters in travelling wave solutions of a damped forced Korteweg de Vries-Kuramoto Sivashinsky type equation. Discrete and Continuous Dynamical Systems - S, 2018, 11 (4) : 691-705. doi: 10.3934/dcdss.2018043

[12]

R. Ouifki, M. L. Hbid, O. Arino. Attractiveness and Hopf bifurcation for retarded differential equations. Communications on Pure and Applied Analysis, 2003, 2 (2) : 147-158. doi: 10.3934/cpaa.2003.2.147

[13]

Tetsutaro Shibata. Global behavior of bifurcation curves for the nonlinear eigenvalue problems with periodic nonlinear terms. Communications on Pure and Applied Analysis, 2018, 17 (5) : 2139-2147. doi: 10.3934/cpaa.2018102

[14]

Patrick M. Fitzpatrick, Jacobo Pejsachowicz. Branching and bifurcation. Discrete and Continuous Dynamical Systems - S, 2019, 12 (7) : 1955-1975. doi: 10.3934/dcdss.2019127

[15]

Sergiy Zhuk. Inverse problems for linear ill-posed differential-algebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 1467-1476. doi: 10.3934/proc.2011.2011.1467

[16]

Ling-Hao Zhang, Wei Wang. Direct approach to detect the heteroclinic bifurcation of the planar nonlinear system. Discrete and Continuous Dynamical Systems, 2017, 37 (1) : 591-604. doi: 10.3934/dcds.2017024

[17]

Carlos Garca-Azpeitia, Jorge Ize. Bifurcation of periodic solutions from a ring configuration of discrete nonlinear oscillators. Discrete and Continuous Dynamical Systems - S, 2013, 6 (4) : 975-983. doi: 10.3934/dcdss.2013.6.975

[18]

Rushun Tian, Zhi-Qiang Wang. Bifurcation results on positive solutions of an indefinite nonlinear elliptic system. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 335-344. doi: 10.3934/dcds.2013.33.335

[19]

Nikolaos S. Papageorgiou, Vicenţiu D. Rădulescu. Bifurcation of positive solutions for nonlinear nonhomogeneous Robin and Neumann problems with competing nonlinearities. Discrete and Continuous Dynamical Systems, 2015, 35 (10) : 5003-5036. doi: 10.3934/dcds.2015.35.5003

[20]

Carmen Núñez, Rafael Obaya. A non-autonomous bifurcation theory for deterministic scalar differential equations. Discrete and Continuous Dynamical Systems - B, 2008, 9 (3&4, May) : 701-730. doi: 10.3934/dcdsb.2008.9.701

 Impact Factor: 

Metrics

  • PDF downloads (167)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]