2015, 2015(special): 340-348. doi: 10.3934/proc.2015.0340

Bifurcation without parameters in circuits with memristors: A DAE approach

1. 

Depto. Matemática Aplicada a las Tecnologías de la Información, ETSI Telecomunicación, Universidad Politécnica de Madrid, Ciudad Universitaria s/n - 28040 Madrid, Spain, Spain

Received  September 2014 Revised  August 2015 Published  November 2015

Bifurcations without parameters describe qualitative changes in the local dynamics of nonlinear ODEs when normal hyperbolicity of a manifold of equilibria fails. Non-isolated equilibrium points are systematically exhibited by nonlinear circuits with memristors; a memristor is a nonlinear device recently introduced in circuit theory and which is expected to play a key role in electronics in the near future. In this communication we provide a graph-theoretic analysis of the transcritical bifurcation without parameters in memristive circuits, owing to the presence of a locally active memristor. The results are crucially based on the use of differential-algebraic circuit models.
Citation: Ignacio García de la Vega, Ricardo Riaza. Bifurcation without parameters in circuits with memristors: A DAE approach. Conference Publications, 2015, 2015 (special) : 340-348. doi: 10.3934/proc.2015.0340
References:
[1]

B. Andrásfai, Introductory Graph Theory,, Akadémiai Kiadó, (1977).   Google Scholar

[2]

B. Andrásfai, Graph Theory: Flows, Matrices,, Adam Hilger, (1991).   Google Scholar

[3]

A. Ascoli, T. Schmidt, R. Tetzlaff and F. Corinto, Application of the Volterra series paradigm to memristive systems, in R. Tetzlaff (ed.),, Memristors and Memristive Systems, (2014), 163.   Google Scholar

[4]

B. Bao, Z. Ma, J. Xu, Z. Liu and Q. Xu, A simple memristor chaotic circuit with complex dynamics,, Internat. J. Bifurcation and Chaos, 21 (2011), 2629.   Google Scholar

[5]

D. Biolek, Z. Biolek and V. Biolkova, SPICE modeling of memristive, memcapacitive and meminductive systems,, Proc. Eur. Conf. Circuit Theor. Design 2009, (2009), 249.   Google Scholar

[6]

B. Bollobás, Modern Graph Theory,, Springer-Verlag, (1998).   Google Scholar

[7]

L. O. Chua, Memristor - The missing circuit element,, IEEE Trans. Circuit Theory, 18 (1971), 507.   Google Scholar

[8]

L. O. Chua, C. A. Desoer and E. S. Kuh, Linear and Nonlinear Circuits,, McGraw-Hill, (1987).   Google Scholar

[9]

F. Corinto, A. Ascoli and M. Gilli, Analysis of current-voltage characteristics for memristive elements in pattern recognition systems,, Internat. J. Circuit Theory Appl., 40 (2012), 1277.   Google Scholar

[10]

M. Di Ventra, Y. V. Pershin and L. O. Chua, Circuit elements with memory: memristors, memcapacitors and meminductors,, Proc. IEEE, 97 (2009), 1717.   Google Scholar

[11]

B. Fiedler, S. Liebscher, and J. C. Alexander, Generic Hopf bifurcation from lines of equilibria without parameters: I. Theory,, J. Differential Equations, 167 (2000), 16.   Google Scholar

[12]

B. Fiedler and S. Liebscher, Generic Hopf bifurcation from lines of equilibria without parameters: II. Systems of viscous hyperbolic balance laws,, SIAM J. Math. Anal., 31 (2000), 1396.   Google Scholar

[13]

B. Fiedler, S. Liebscher, and J. C. Alexander, Generic Hopf bifurcation from lines of equilibria without parameters: III. Binary oscillations,, Internat. J. Bifur. Chaos, 10 (2000), 1613.   Google Scholar

[14]

M. Itoh and L. O. Chua, Memristor oscillators,, Internat. J. Bifur. Chaos, 18 (2008), 3183.   Google Scholar

[15]

M. Itoh and L. O. Chua, Memristor Hamiltonian circuits,, Internat. J. Bifur. Chaos, 21 (2011), 2395.   Google Scholar

[16]

L. Jansen, M. Matthes and C. Tischendorf, Global unique solvability for memristive circuit DAEs of index 1,, Int. J. Circuit Theory Appl., (2014).   Google Scholar

[17]

D. Jeltsema and A. Doria-Cerezo, Port-Hamiltonian formulation of systems with memory,, Proc. IEEE, 100 (2012), 1928.   Google Scholar

[18]

O. Kavehei, A. Iqbal, Y. S. Kim, K. Eshraghian, S. F. Al-Sarawi and D. Abbott, The fourth element: characteristics, modelling and electromagnetic theory of the memristor,, Proc. R. Soc. A, 466 (2010), 2175.   Google Scholar

[19]

M. Messias, C. Nespoli and V. A. Botta, Hopf bifurcation from lines of equilibria without parameters in memristors oscillators,, Internat. J. Bifur. Chaos, 20 (2010), 437.   Google Scholar

[20]

B. Muthuswamy and L. O. Chua, Simplest chaotic circuit,, Internat. J. Bifur. Chaos, 20 (2010), 1567.   Google Scholar

[21]

Y. V. Pershin and M. Di Ventra, Neuromorphic, digital and quantum computation with memory circuit elements,, Proc. IEEE, 100 (2012), 2071.   Google Scholar

[22]

Y. V. Pershin and M. Di Ventra, Memory effects in complex materials and nanoscale systems,, Advances in Physics, 60 (2011), 145.   Google Scholar

[23]

R. Riaza, Differential-Algebraic Systems,, World Scientific, (2008).   Google Scholar

[24]

R. Riaza, Nondegeneracy conditions for active memristive circuits,, IEEE Trans. Circuits and Systems - II, 57 (2010), 223.   Google Scholar

[25]

R. Riaza, Manifolds of equilibria and bifurcations without parameters in memristive circuits,, SIAM J. Appl. Math., 72 (2012), 877.   Google Scholar

[26]

D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, The missing memristor found,, Nature, 453 (2008), 80.   Google Scholar

[27]

C. Tischendorf, Coupled systems of differential algebraic and partial differential equations in circuit and device simulation. Modeling and numerical analysis,, Habilitationsschrift, (2003).   Google Scholar

show all references

References:
[1]

B. Andrásfai, Introductory Graph Theory,, Akadémiai Kiadó, (1977).   Google Scholar

[2]

B. Andrásfai, Graph Theory: Flows, Matrices,, Adam Hilger, (1991).   Google Scholar

[3]

A. Ascoli, T. Schmidt, R. Tetzlaff and F. Corinto, Application of the Volterra series paradigm to memristive systems, in R. Tetzlaff (ed.),, Memristors and Memristive Systems, (2014), 163.   Google Scholar

[4]

B. Bao, Z. Ma, J. Xu, Z. Liu and Q. Xu, A simple memristor chaotic circuit with complex dynamics,, Internat. J. Bifurcation and Chaos, 21 (2011), 2629.   Google Scholar

[5]

D. Biolek, Z. Biolek and V. Biolkova, SPICE modeling of memristive, memcapacitive and meminductive systems,, Proc. Eur. Conf. Circuit Theor. Design 2009, (2009), 249.   Google Scholar

[6]

B. Bollobás, Modern Graph Theory,, Springer-Verlag, (1998).   Google Scholar

[7]

L. O. Chua, Memristor - The missing circuit element,, IEEE Trans. Circuit Theory, 18 (1971), 507.   Google Scholar

[8]

L. O. Chua, C. A. Desoer and E. S. Kuh, Linear and Nonlinear Circuits,, McGraw-Hill, (1987).   Google Scholar

[9]

F. Corinto, A. Ascoli and M. Gilli, Analysis of current-voltage characteristics for memristive elements in pattern recognition systems,, Internat. J. Circuit Theory Appl., 40 (2012), 1277.   Google Scholar

[10]

M. Di Ventra, Y. V. Pershin and L. O. Chua, Circuit elements with memory: memristors, memcapacitors and meminductors,, Proc. IEEE, 97 (2009), 1717.   Google Scholar

[11]

B. Fiedler, S. Liebscher, and J. C. Alexander, Generic Hopf bifurcation from lines of equilibria without parameters: I. Theory,, J. Differential Equations, 167 (2000), 16.   Google Scholar

[12]

B. Fiedler and S. Liebscher, Generic Hopf bifurcation from lines of equilibria without parameters: II. Systems of viscous hyperbolic balance laws,, SIAM J. Math. Anal., 31 (2000), 1396.   Google Scholar

[13]

B. Fiedler, S. Liebscher, and J. C. Alexander, Generic Hopf bifurcation from lines of equilibria without parameters: III. Binary oscillations,, Internat. J. Bifur. Chaos, 10 (2000), 1613.   Google Scholar

[14]

M. Itoh and L. O. Chua, Memristor oscillators,, Internat. J. Bifur. Chaos, 18 (2008), 3183.   Google Scholar

[15]

M. Itoh and L. O. Chua, Memristor Hamiltonian circuits,, Internat. J. Bifur. Chaos, 21 (2011), 2395.   Google Scholar

[16]

L. Jansen, M. Matthes and C. Tischendorf, Global unique solvability for memristive circuit DAEs of index 1,, Int. J. Circuit Theory Appl., (2014).   Google Scholar

[17]

D. Jeltsema and A. Doria-Cerezo, Port-Hamiltonian formulation of systems with memory,, Proc. IEEE, 100 (2012), 1928.   Google Scholar

[18]

O. Kavehei, A. Iqbal, Y. S. Kim, K. Eshraghian, S. F. Al-Sarawi and D. Abbott, The fourth element: characteristics, modelling and electromagnetic theory of the memristor,, Proc. R. Soc. A, 466 (2010), 2175.   Google Scholar

[19]

M. Messias, C. Nespoli and V. A. Botta, Hopf bifurcation from lines of equilibria without parameters in memristors oscillators,, Internat. J. Bifur. Chaos, 20 (2010), 437.   Google Scholar

[20]

B. Muthuswamy and L. O. Chua, Simplest chaotic circuit,, Internat. J. Bifur. Chaos, 20 (2010), 1567.   Google Scholar

[21]

Y. V. Pershin and M. Di Ventra, Neuromorphic, digital and quantum computation with memory circuit elements,, Proc. IEEE, 100 (2012), 2071.   Google Scholar

[22]

Y. V. Pershin and M. Di Ventra, Memory effects in complex materials and nanoscale systems,, Advances in Physics, 60 (2011), 145.   Google Scholar

[23]

R. Riaza, Differential-Algebraic Systems,, World Scientific, (2008).   Google Scholar

[24]

R. Riaza, Nondegeneracy conditions for active memristive circuits,, IEEE Trans. Circuits and Systems - II, 57 (2010), 223.   Google Scholar

[25]

R. Riaza, Manifolds of equilibria and bifurcations without parameters in memristive circuits,, SIAM J. Appl. Math., 72 (2012), 877.   Google Scholar

[26]

D. B. Strukov, G. S. Snider, D. R. Stewart and R. S. Williams, The missing memristor found,, Nature, 453 (2008), 80.   Google Scholar

[27]

C. Tischendorf, Coupled systems of differential algebraic and partial differential equations in circuit and device simulation. Modeling and numerical analysis,, Habilitationsschrift, (2003).   Google Scholar

[1]

Kerioui Nadjah, Abdelouahab Mohammed Salah. Stability and Hopf bifurcation of the coexistence equilibrium for a differential-algebraic biological economic system with predator harvesting. Electronic Research Archive, 2021, 29 (1) : 1641-1660. doi: 10.3934/era.2020084

[2]

Yangjian Sun, Changjian Liu. The Poincaré bifurcation of a SD oscillator. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1565-1577. doi: 10.3934/dcdsb.2020173

[3]

Bernold Fiedler. Global Hopf bifurcation in networks with fast feedback cycles. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 177-203. doi: 10.3934/dcdss.2020344

[4]

Joel Kübler, Tobias Weth. Spectral asymptotics of radial solutions and nonradial bifurcation for the Hénon equation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3629-3656. doi: 10.3934/dcds.2020032

[5]

Chihiro Aida, Chao-Nien Chen, Kousuke Kuto, Hirokazu Ninomiya. Bifurcation from infinity with applications to reaction-diffusion systems. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3031-3055. doi: 10.3934/dcds.2020053

[6]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[7]

Kuo-Chih Hung, Shin-Hwa Wang. Classification and evolution of bifurcation curves for a porous-medium combustion problem with large activation energy. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020281

[8]

Xianyong Chen, Weihua Jiang. Multiple spatiotemporal coexistence states and Turing-Hopf bifurcation in a Lotka-Volterra competition system with nonlocal delays. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2021013

[9]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[10]

Yue-Jun Peng, Shu Wang. Asymptotic expansions in two-fluid compressible Euler-Maxwell equations with small parameters. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 415-433. doi: 10.3934/dcds.2009.23.415

[11]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[12]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[13]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[14]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[15]

Matthieu Alfaro, Isabeau Birindelli. Evolution equations involving nonlinear truncated Laplacian operators. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3057-3073. doi: 10.3934/dcds.2020046

[16]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[17]

Junyong Eom, Kazuhiro Ishige. Large time behavior of ODE type solutions to nonlinear diffusion equations. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3395-3409. doi: 10.3934/dcds.2019229

[18]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[19]

Andrew Comech, Scipio Cuccagna. On asymptotic stability of ground states of some systems of nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1225-1270. doi: 10.3934/dcds.2020316

[20]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

 Impact Factor: 

Metrics

  • PDF downloads (81)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]