2015, 2015(special): 349-358. doi: 10.3934/proc.2015.0349

Anisotropically diffused and damped Navier-Stokes equations

1. 

FCT - Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal

Received  September 2014 Revised  February 2015 Published  November 2015

The incompressible Navier-Stokes equations with anisotropic diffusion and anisotropic damping is considered in this work. For the associated initial-boundary value problem, we prove the existence of weak solutions and we establish an energy inequality satisfied by these solutions. We prove also under what conditions the solutions of this problem extinct in a finite time.
Citation: Hermenegildo Borges de Oliveira. Anisotropically diffused and damped Navier-Stokes equations. Conference Publications, 2015, 2015 (special) : 349-358. doi: 10.3934/proc.2015.0349
References:
[1]

S.N. Antontsev, J.I. Díaz and S.I. Shmarev., Energy methods for free boundary problems., Progr. Nonlinear Differential Equations Appl. 48, 48 (2002).   Google Scholar

[2]

S.N. Antontsev and H.B. de Oliveira., Analysis of the existence for the steady Navier-Stokes equations with anisotropic diffusion., Adv. Differential Equations 19 (2014) no. 5-6, 19 (2014), 5.   Google Scholar

[3]

S.N. Antontsev and H.B. de Oliveira., Evolution problems of Navier-Stokes type with anisotropic diffusion., \emph{Revista de la Real Academia de Ciencias Exactas, (2015), 1.   Google Scholar

[4]

I. Fragalà, F. Gazzola and B. Kawohl., Existence and nonexistence results for anisotropic quasilinear elliptic equations., Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 21 (2004), 715.   Google Scholar

[5]

J.K. Djoko, and P.A. Razafimandimby., Analysis of the Brinkman-Forchheimer equations with slip boundary conditions., Appl. Anal. 93 (2014), 93 (2014), 1477.   Google Scholar

[6]

J. Frehse, J. Málek and M. Steinhauer., On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method., SIAM J. Math. Anal. 34 (2003), 34 (2003), 1064.   Google Scholar

[7]

J. Haškovec and C. Schmeiser., A note on the anisotropic generalizations of the Sobolev and Morrey embedding theorems., Monatsh. Math. 158 (2009), 158 (2009), 71.   Google Scholar

[8]

V. Kalantarov and S. Zelik., Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities., Commun. Pure Appl. Anal. 11 (2012), 11 (2012), 2037.   Google Scholar

[9]

J.-L. Lions., Quelques mèthodes de résolution des problèmes aux limites non liniaires., Dunod, (1969).   Google Scholar

[10]

J. Málek, J. Nečas, M. Rokyta and M.R$\dot u$žička., Weak and measure-valued solutions to evolutionary PDEs., Chapman & Hall, (1996).   Google Scholar

[11]

H.B. de Oliveira., On the influence of an absorption term in incompressible fluid flows., Adv. Math. Fluid Mech. Springer-Verlag (2010), (2010), 409.   Google Scholar

[12]

H.B. de Oliveira., Existence of weak solutions for the generalized Navier-Stokes equations with damping., NoDEA Nonlinear Differential Equations Appl. 20 (2013) no. 3, 20 (2013), 797.   Google Scholar

[13]

J. Rákosník., Some remarks to anisotropic Sobolev spaces. II., Beiträge Anal. No. 15 (1980), 15 (1980), 127.   Google Scholar

[14]

M. Troisi., Teoremi di inclusione per spazi di Sobolev non isotropi., Ricerche Mat. 18 (1969), 18 (1969), 3.   Google Scholar

show all references

References:
[1]

S.N. Antontsev, J.I. Díaz and S.I. Shmarev., Energy methods for free boundary problems., Progr. Nonlinear Differential Equations Appl. 48, 48 (2002).   Google Scholar

[2]

S.N. Antontsev and H.B. de Oliveira., Analysis of the existence for the steady Navier-Stokes equations with anisotropic diffusion., Adv. Differential Equations 19 (2014) no. 5-6, 19 (2014), 5.   Google Scholar

[3]

S.N. Antontsev and H.B. de Oliveira., Evolution problems of Navier-Stokes type with anisotropic diffusion., \emph{Revista de la Real Academia de Ciencias Exactas, (2015), 1.   Google Scholar

[4]

I. Fragalà, F. Gazzola and B. Kawohl., Existence and nonexistence results for anisotropic quasilinear elliptic equations., Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004), 21 (2004), 715.   Google Scholar

[5]

J.K. Djoko, and P.A. Razafimandimby., Analysis of the Brinkman-Forchheimer equations with slip boundary conditions., Appl. Anal. 93 (2014), 93 (2014), 1477.   Google Scholar

[6]

J. Frehse, J. Málek and M. Steinhauer., On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method., SIAM J. Math. Anal. 34 (2003), 34 (2003), 1064.   Google Scholar

[7]

J. Haškovec and C. Schmeiser., A note on the anisotropic generalizations of the Sobolev and Morrey embedding theorems., Monatsh. Math. 158 (2009), 158 (2009), 71.   Google Scholar

[8]

V. Kalantarov and S. Zelik., Smooth attractors for the Brinkman-Forchheimer equations with fast growing nonlinearities., Commun. Pure Appl. Anal. 11 (2012), 11 (2012), 2037.   Google Scholar

[9]

J.-L. Lions., Quelques mèthodes de résolution des problèmes aux limites non liniaires., Dunod, (1969).   Google Scholar

[10]

J. Málek, J. Nečas, M. Rokyta and M.R$\dot u$žička., Weak and measure-valued solutions to evolutionary PDEs., Chapman & Hall, (1996).   Google Scholar

[11]

H.B. de Oliveira., On the influence of an absorption term in incompressible fluid flows., Adv. Math. Fluid Mech. Springer-Verlag (2010), (2010), 409.   Google Scholar

[12]

H.B. de Oliveira., Existence of weak solutions for the generalized Navier-Stokes equations with damping., NoDEA Nonlinear Differential Equations Appl. 20 (2013) no. 3, 20 (2013), 797.   Google Scholar

[13]

J. Rákosník., Some remarks to anisotropic Sobolev spaces. II., Beiträge Anal. No. 15 (1980), 15 (1980), 127.   Google Scholar

[14]

M. Troisi., Teoremi di inclusione per spazi di Sobolev non isotropi., Ricerche Mat. 18 (1969), 18 (1969), 3.   Google Scholar

[1]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[2]

Xuhui Peng, Rangrang Zhang. Approximations of stochastic 3D tamed Navier-Stokes equations. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5337-5365. doi: 10.3934/cpaa.2020241

[3]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[4]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[5]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[6]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[7]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[8]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[9]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[10]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[11]

Guido Cavallaro, Roberto Garra, Carlo Marchioro. Long time localization of modified surface quasi-geostrophic equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020336

[12]

Cuicui Li, Lin Zhou, Zhidong Teng, Buyu Wen. The threshold dynamics of a discrete-time echinococcosis transmission model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020339

[13]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[14]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[15]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[16]

Haixiang Yao, Ping Chen, Miao Zhang, Xun Li. Dynamic discrete-time portfolio selection for defined contribution pension funds with inflation risk. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020166

[17]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[18]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[19]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[20]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

 Impact Factor: 

Metrics

  • PDF downloads (71)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]