2015, 2015(special): 359-368. doi: 10.3934/proc.2015.0359

Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation

1. 

Department of Mathematics, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States

2. 

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515, United States

3. 

Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045–7523

4. 

Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045-7523

Received  September 2014 Revised  April 2015 Published  November 2015

In the present work, we introduce a new $\mathcal{PT}$-symmetric variant of the Klein-Gordon field theoretic problem. We identify the standing wave solutions of the proposed class of equations and analyze their stability. In particular, we obtain an explicit frequency condition, somewhat reminiscent of the classical Vakhitov-Kolokolov criterion, which sharply separates the regimes of spectral stability and instability. Our numerical computations corroborate the relevant theoretical result.
Citation: Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359
References:
[1]

C. M. Bender, Making Sense of Non-Hermitian Hamiltonians,, Rep. Prog. Phys., 70 (2007), 947. Google Scholar

[2]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Beam Dynamics in $\mathcal{PT}$ Symmetric Optical Lattices,, Phys. Rev. Lett., 100 (2008). Google Scholar

[3]

H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, Unidirectional nonlinear PT-symmetric optical structures,, Phys. Rev. A, 82 (2010). Google Scholar

[4]

A. Ruschhaupt, F. Delgado, and J. G. Muga, Physical realization of a $\mathcal{PT}$-symmetric potential scattering in a planar slab waveguide,, J. Phys. A: Math. Gen., 38 (2005). Google Scholar

[5]

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of $\mathcal{PT}$-symmetry breaking in complex optical potentials,, Phys. Rev. Lett., 103 (2009). Google Scholar

[6]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of paritytime symmetry in optics,, Nature Phys., 6 (2010). Google Scholar

[7]

J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Experimental study of active LRC circuits with $\mathcal{PT}$ symmetries,, Phys. Rev. A, 84 (2011). Google Scholar

[8]

H. Ramezani, J. Schindler, F. M. Ellis, U. Günther, and T. Kottos, Bypassing the bandwidth theorem with $\mathcal{PT}$ symmetry,, Phys. Rev. A, 85 (2012). Google Scholar

[9]

C. M. Bender, B. J. Berntson, D. Parker and E. Samuel, Observation of $\mathcal{PT}$-phase transition in a simple mechanical system,, Am. J. Phys., 81 (2013). Google Scholar

[10]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Paritytime-symmetric whispering-gallery microcavities,, Nature Physics, 10 (2014). Google Scholar

[11]

N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N. Christodoulides, F. M. Ellis, and T. Kottos, Observation of Asymmetric Transport in Structures with Active Nonlinearities,, Phys. Rev. Lett., 110 (2013). Google Scholar

[12]

A. Demirkaya, D. J. Frantzeskakis, P. G. Kevrekidis, A. Saxena, and A. Stefanov, Effects of $\mathcal{PT}$-symmetry in Nonlinear Klein-Gordon Field Theories and Their Solitary Waves,, Phys. Rev. E, 88 (2013). Google Scholar

[13]

A. Demirkaya, M. Stanislavova, A. Stefanov, T. Kapitula, and P. G. Kevrekidis, On the Spectral Stability of Kinks in Some $\mathcal{PT}$-Symmetric Variants of the Classical KleinGordon Field Theories,, Studies Appl. Math., (2014). Google Scholar

[14]

P. G. Kevrekidis, Variational method for nonconservative field theories: Formulation and two $\mathcal{PT}$-symmetric examples,, Phys. Rev. A, 89 (2014). Google Scholar

[15]

J. Cuevas, L. Q. English, P.G. Kevrekidis, and M. Anderson, Discrete Breathers in a Forced-Damped Array of Coupled Pendula: Modeling, Computation, and Experiment,, Phys. Rev. Lett., 102 (2009). Google Scholar

[16]

M. Stanislavova and A. Stefanov, Spectral stability analysis for special solutions of second order in time PDE's: the higher dimensional case,, Physica D, 262 (2013), 1. Google Scholar

[17]

M. G. Vakhitov and A. A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation,, Radiophys. Quantum Electron., 16 (1973). Google Scholar

[18]

M. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p=0$ in $R^n$,, Arch. Rational Mech. Anal., 105 (1989), 243. Google Scholar

[19]

M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 472. Google Scholar

[20]

J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations,, Trans. Amer. Math. Soc., 290 (1985), 701. Google Scholar

show all references

References:
[1]

C. M. Bender, Making Sense of Non-Hermitian Hamiltonians,, Rep. Prog. Phys., 70 (2007), 947. Google Scholar

[2]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Beam Dynamics in $\mathcal{PT}$ Symmetric Optical Lattices,, Phys. Rev. Lett., 100 (2008). Google Scholar

[3]

H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, Unidirectional nonlinear PT-symmetric optical structures,, Phys. Rev. A, 82 (2010). Google Scholar

[4]

A. Ruschhaupt, F. Delgado, and J. G. Muga, Physical realization of a $\mathcal{PT}$-symmetric potential scattering in a planar slab waveguide,, J. Phys. A: Math. Gen., 38 (2005). Google Scholar

[5]

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of $\mathcal{PT}$-symmetry breaking in complex optical potentials,, Phys. Rev. Lett., 103 (2009). Google Scholar

[6]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of paritytime symmetry in optics,, Nature Phys., 6 (2010). Google Scholar

[7]

J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Experimental study of active LRC circuits with $\mathcal{PT}$ symmetries,, Phys. Rev. A, 84 (2011). Google Scholar

[8]

H. Ramezani, J. Schindler, F. M. Ellis, U. Günther, and T. Kottos, Bypassing the bandwidth theorem with $\mathcal{PT}$ symmetry,, Phys. Rev. A, 85 (2012). Google Scholar

[9]

C. M. Bender, B. J. Berntson, D. Parker and E. Samuel, Observation of $\mathcal{PT}$-phase transition in a simple mechanical system,, Am. J. Phys., 81 (2013). Google Scholar

[10]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Paritytime-symmetric whispering-gallery microcavities,, Nature Physics, 10 (2014). Google Scholar

[11]

N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N. Christodoulides, F. M. Ellis, and T. Kottos, Observation of Asymmetric Transport in Structures with Active Nonlinearities,, Phys. Rev. Lett., 110 (2013). Google Scholar

[12]

A. Demirkaya, D. J. Frantzeskakis, P. G. Kevrekidis, A. Saxena, and A. Stefanov, Effects of $\mathcal{PT}$-symmetry in Nonlinear Klein-Gordon Field Theories and Their Solitary Waves,, Phys. Rev. E, 88 (2013). Google Scholar

[13]

A. Demirkaya, M. Stanislavova, A. Stefanov, T. Kapitula, and P. G. Kevrekidis, On the Spectral Stability of Kinks in Some $\mathcal{PT}$-Symmetric Variants of the Classical KleinGordon Field Theories,, Studies Appl. Math., (2014). Google Scholar

[14]

P. G. Kevrekidis, Variational method for nonconservative field theories: Formulation and two $\mathcal{PT}$-symmetric examples,, Phys. Rev. A, 89 (2014). Google Scholar

[15]

J. Cuevas, L. Q. English, P.G. Kevrekidis, and M. Anderson, Discrete Breathers in a Forced-Damped Array of Coupled Pendula: Modeling, Computation, and Experiment,, Phys. Rev. Lett., 102 (2009). Google Scholar

[16]

M. Stanislavova and A. Stefanov, Spectral stability analysis for special solutions of second order in time PDE's: the higher dimensional case,, Physica D, 262 (2013), 1. Google Scholar

[17]

M. G. Vakhitov and A. A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation,, Radiophys. Quantum Electron., 16 (1973). Google Scholar

[18]

M. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p=0$ in $R^n$,, Arch. Rational Mech. Anal., 105 (1989), 243. Google Scholar

[19]

M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 472. Google Scholar

[20]

J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations,, Trans. Amer. Math. Soc., 290 (1985), 701. Google Scholar

[1]

François Genoud. Orbitally stable standing waves for the asymptotically linear one-dimensional NLS. Evolution Equations & Control Theory, 2013, 2 (1) : 81-100. doi: 10.3934/eect.2013.2.81

[2]

François Genoud, Charles A. Stuart. Schrödinger equations with a spatially decaying nonlinearity: Existence and stability of standing waves. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 137-186. doi: 10.3934/dcds.2008.21.137

[3]

Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of Klein-Gordon equations in a semiclassical regime. Discrete & Continuous Dynamical Systems - A, 2013, 33 (6) : 2389-2401. doi: 10.3934/dcds.2013.33.2389

[4]

Reika Fukuizumi. Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential. Discrete & Continuous Dynamical Systems - A, 2001, 7 (3) : 525-544. doi: 10.3934/dcds.2001.7.525

[5]

Salvador Cruz-García, Catherine García-Reimbert. On the spectral stability of standing waves of the one-dimensional $M^5$-model. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1079-1099. doi: 10.3934/dcdsb.2016.21.1079

[6]

François Genoud. Existence and stability of high frequency standing waves for a nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2009, 25 (4) : 1229-1247. doi: 10.3934/dcds.2009.25.1229

[7]

Jerry L. Bona, Thierry Colin, Colette Guillopé. Propagation of long-crested water waves. Ⅱ. Bore propagation. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5543-5569. doi: 10.3934/dcds.2019244

[8]

Fábio Natali, Ademir Pastor. Stability properties of periodic standing waves for the Klein-Gordon-Schrödinger system. Communications on Pure & Applied Analysis, 2010, 9 (2) : 413-430. doi: 10.3934/cpaa.2010.9.413

[9]

Alex H. Ardila. Stability of standing waves for a nonlinear SchrÖdinger equation under an external magnetic field. Communications on Pure & Applied Analysis, 2018, 17 (1) : 163-175. doi: 10.3934/cpaa.2018010

[10]

Reika Fukuizumi, Louis Jeanjean. Stability of standing waves for a nonlinear Schrödinger equation wdelta potentialith a repulsive Dirac. Discrete & Continuous Dynamical Systems - A, 2008, 21 (1) : 121-136. doi: 10.3934/dcds.2008.21.121

[11]

Jun-ichi Segata. Initial value problem for the fourth order nonlinear Schrödinger type equation on torus and orbital stability of standing waves. Communications on Pure & Applied Analysis, 2015, 14 (3) : 843-859. doi: 10.3934/cpaa.2015.14.843

[12]

Riccardo Adami, Diego Noja, Cecilia Ortoleva. Asymptotic stability for standing waves of a NLS equation with subcritical concentrated nonlinearity in dimension three: Neutral modes. Discrete & Continuous Dynamical Systems - A, 2016, 36 (11) : 5837-5879. doi: 10.3934/dcds.2016057

[13]

Aslihan Demirkaya, Milena Stanislavova. Numerical results on existence and stability of standing and traveling waves for the fourth order beam equation. Discrete & Continuous Dynamical Systems - B, 2019, 24 (1) : 197-209. doi: 10.3934/dcdsb.2018097

[14]

Michael Herrmann. Homoclinic standing waves in focusing DNLS equations. Discrete & Continuous Dynamical Systems - A, 2011, 31 (3) : 737-752. doi: 10.3934/dcds.2011.31.737

[15]

Michiel Bertsch, Hirofumi Izuhara, Masayasu Mimura, Tohru Wakasa. Standing and travelling waves in a parabolic-hyperbolic system. Discrete & Continuous Dynamical Systems - A, 2019, 39 (10) : 5603-5635. doi: 10.3934/dcds.2019246

[16]

Masahito Ohta. Strong instability of standing waves for nonlinear Schrödinger equations with a partial confinement. Communications on Pure & Applied Analysis, 2018, 17 (4) : 1671-1680. doi: 10.3934/cpaa.2018080

[17]

Xiaoyu Zeng. Asymptotic properties of standing waves for mass subcritical nonlinear Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2017, 37 (3) : 1749-1762. doi: 10.3934/dcds.2017073

[18]

Yue Liu. Existence of unstable standing waves for the inhomogeneous nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 193-209. doi: 10.3934/cpaa.2008.7.193

[19]

Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear Klein-Gordon equations. Discrete & Continuous Dynamical Systems - A, 2005, 12 (2) : 315-322. doi: 10.3934/dcds.2005.12.315

[20]

Soohyun Bae, Jaeyoung Byeon. Standing waves of nonlinear Schrödinger equations with optimal conditions for potential and nonlinearity. Communications on Pure & Applied Analysis, 2013, 12 (2) : 831-850. doi: 10.3934/cpaa.2013.12.831

 Impact Factor: 

Metrics

  • PDF downloads (10)
  • HTML views (0)
  • Cited by (0)

[Back to Top]