2015, 2015(special): 359-368. doi: 10.3934/proc.2015.0359

Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation

1. 

Department of Mathematics, University of Hartford, 200 Bloomfield Avenue, West Hartford, CT 06117, United States

2. 

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515, United States

3. 

Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045–7523

4. 

Department of Mathematics, University of Kansas, 1460 Jayhawk Blvd, Lawrence, KS 66045-7523

Received  September 2014 Revised  April 2015 Published  November 2015

In the present work, we introduce a new $\mathcal{PT}$-symmetric variant of the Klein-Gordon field theoretic problem. We identify the standing wave solutions of the proposed class of equations and analyze their stability. In particular, we obtain an explicit frequency condition, somewhat reminiscent of the classical Vakhitov-Kolokolov criterion, which sharply separates the regimes of spectral stability and instability. Our numerical computations corroborate the relevant theoretical result.
Citation: Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed Klein-Gordon equation. Conference Publications, 2015, 2015 (special) : 359-368. doi: 10.3934/proc.2015.0359
References:
[1]

C. M. Bender, Making Sense of Non-Hermitian Hamiltonians,, Rep. Prog. Phys., 70 (2007), 947.   Google Scholar

[2]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Beam Dynamics in $\mathcal{PT}$ Symmetric Optical Lattices,, Phys. Rev. Lett., 100 (2008).   Google Scholar

[3]

H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, Unidirectional nonlinear PT-symmetric optical structures,, Phys. Rev. A, 82 (2010).   Google Scholar

[4]

A. Ruschhaupt, F. Delgado, and J. G. Muga, Physical realization of a $\mathcal{PT}$-symmetric potential scattering in a planar slab waveguide,, J. Phys. A: Math. Gen., 38 (2005).   Google Scholar

[5]

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of $\mathcal{PT}$-symmetry breaking in complex optical potentials,, Phys. Rev. Lett., 103 (2009).   Google Scholar

[6]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of paritytime symmetry in optics,, Nature Phys., 6 (2010).   Google Scholar

[7]

J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Experimental study of active LRC circuits with $\mathcal{PT}$ symmetries,, Phys. Rev. A, 84 (2011).   Google Scholar

[8]

H. Ramezani, J. Schindler, F. M. Ellis, U. Günther, and T. Kottos, Bypassing the bandwidth theorem with $\mathcal{PT}$ symmetry,, Phys. Rev. A, 85 (2012).   Google Scholar

[9]

C. M. Bender, B. J. Berntson, D. Parker and E. Samuel, Observation of $\mathcal{PT}$-phase transition in a simple mechanical system,, Am. J. Phys., 81 (2013).   Google Scholar

[10]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Paritytime-symmetric whispering-gallery microcavities,, Nature Physics, 10 (2014).   Google Scholar

[11]

N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N. Christodoulides, F. M. Ellis, and T. Kottos, Observation of Asymmetric Transport in Structures with Active Nonlinearities,, Phys. Rev. Lett., 110 (2013).   Google Scholar

[12]

A. Demirkaya, D. J. Frantzeskakis, P. G. Kevrekidis, A. Saxena, and A. Stefanov, Effects of $\mathcal{PT}$-symmetry in Nonlinear Klein-Gordon Field Theories and Their Solitary Waves,, Phys. Rev. E, 88 (2013).   Google Scholar

[13]

A. Demirkaya, M. Stanislavova, A. Stefanov, T. Kapitula, and P. G. Kevrekidis, On the Spectral Stability of Kinks in Some $\mathcal{PT}$-Symmetric Variants of the Classical KleinGordon Field Theories,, Studies Appl. Math., (2014).   Google Scholar

[14]

P. G. Kevrekidis, Variational method for nonconservative field theories: Formulation and two $\mathcal{PT}$-symmetric examples,, Phys. Rev. A, 89 (2014).   Google Scholar

[15]

J. Cuevas, L. Q. English, P.G. Kevrekidis, and M. Anderson, Discrete Breathers in a Forced-Damped Array of Coupled Pendula: Modeling, Computation, and Experiment,, Phys. Rev. Lett., 102 (2009).   Google Scholar

[16]

M. Stanislavova and A. Stefanov, Spectral stability analysis for special solutions of second order in time PDE's: the higher dimensional case,, Physica D, 262 (2013), 1.   Google Scholar

[17]

M. G. Vakhitov and A. A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation,, Radiophys. Quantum Electron., 16 (1973).   Google Scholar

[18]

M. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p=0$ in $R^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.   Google Scholar

[19]

M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 472.   Google Scholar

[20]

J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations,, Trans. Amer. Math. Soc., 290 (1985), 701.   Google Scholar

show all references

References:
[1]

C. M. Bender, Making Sense of Non-Hermitian Hamiltonians,, Rep. Prog. Phys., 70 (2007), 947.   Google Scholar

[2]

K. G. Makris, R. El-Ganainy, D. N. Christodoulides, and Z. H. Musslimani, Beam Dynamics in $\mathcal{PT}$ Symmetric Optical Lattices,, Phys. Rev. Lett., 100 (2008).   Google Scholar

[3]

H. Ramezani, T. Kottos, R. El-Ganainy, and D. N. Christodoulides, Unidirectional nonlinear PT-symmetric optical structures,, Phys. Rev. A, 82 (2010).   Google Scholar

[4]

A. Ruschhaupt, F. Delgado, and J. G. Muga, Physical realization of a $\mathcal{PT}$-symmetric potential scattering in a planar slab waveguide,, J. Phys. A: Math. Gen., 38 (2005).   Google Scholar

[5]

A. Guo, G. J. Salamo, D. Duchesne, R. Morandotti, M. Volatier-Ravat, V. Aimez, G. A. Siviloglou, and D. N. Christodoulides, Observation of $\mathcal{PT}$-symmetry breaking in complex optical potentials,, Phys. Rev. Lett., 103 (2009).   Google Scholar

[6]

C. E. Rüter, K. G. Makris, R. El-Ganainy, D. N. Christodoulides, M. Segev, and D. Kip, Observation of paritytime symmetry in optics,, Nature Phys., 6 (2010).   Google Scholar

[7]

J. Schindler, A. Li, M. C. Zheng, F. M. Ellis, and T. Kottos, Experimental study of active LRC circuits with $\mathcal{PT}$ symmetries,, Phys. Rev. A, 84 (2011).   Google Scholar

[8]

H. Ramezani, J. Schindler, F. M. Ellis, U. Günther, and T. Kottos, Bypassing the bandwidth theorem with $\mathcal{PT}$ symmetry,, Phys. Rev. A, 85 (2012).   Google Scholar

[9]

C. M. Bender, B. J. Berntson, D. Parker and E. Samuel, Observation of $\mathcal{PT}$-phase transition in a simple mechanical system,, Am. J. Phys., 81 (2013).   Google Scholar

[10]

B. Peng, S. K. Ozdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, Paritytime-symmetric whispering-gallery microcavities,, Nature Physics, 10 (2014).   Google Scholar

[11]

N. Bender, S. Factor, J. D. Bodyfelt, H. Ramezani, D. N. Christodoulides, F. M. Ellis, and T. Kottos, Observation of Asymmetric Transport in Structures with Active Nonlinearities,, Phys. Rev. Lett., 110 (2013).   Google Scholar

[12]

A. Demirkaya, D. J. Frantzeskakis, P. G. Kevrekidis, A. Saxena, and A. Stefanov, Effects of $\mathcal{PT}$-symmetry in Nonlinear Klein-Gordon Field Theories and Their Solitary Waves,, Phys. Rev. E, 88 (2013).   Google Scholar

[13]

A. Demirkaya, M. Stanislavova, A. Stefanov, T. Kapitula, and P. G. Kevrekidis, On the Spectral Stability of Kinks in Some $\mathcal{PT}$-Symmetric Variants of the Classical KleinGordon Field Theories,, Studies Appl. Math., (2014).   Google Scholar

[14]

P. G. Kevrekidis, Variational method for nonconservative field theories: Formulation and two $\mathcal{PT}$-symmetric examples,, Phys. Rev. A, 89 (2014).   Google Scholar

[15]

J. Cuevas, L. Q. English, P.G. Kevrekidis, and M. Anderson, Discrete Breathers in a Forced-Damped Array of Coupled Pendula: Modeling, Computation, and Experiment,, Phys. Rev. Lett., 102 (2009).   Google Scholar

[16]

M. Stanislavova and A. Stefanov, Spectral stability analysis for special solutions of second order in time PDE's: the higher dimensional case,, Physica D, 262 (2013), 1.   Google Scholar

[17]

M. G. Vakhitov and A. A. Kolokolov, Stationary solutions of the wave equation in a medium with nonlinearity saturation,, Radiophys. Quantum Electron., 16 (1973).   Google Scholar

[18]

M. Kwong, Uniqueness of positive solutions of $\Delta u - u + u^p=0$ in $R^n$,, Arch. Rational Mech. Anal., 105 (1989), 243.   Google Scholar

[19]

M. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,, SIAM J. Math. Anal., 16 (1985), 472.   Google Scholar

[20]

J. Shatah, Unstable ground state of nonlinear Klein-Gordon equations,, Trans. Amer. Math. Soc., 290 (1985), 701.   Google Scholar

[1]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[2]

Zhenzhen Wang, Tianshou Zhou. Asymptotic behaviors and stochastic traveling waves in stochastic Fisher-KPP equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020323

[3]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[4]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[5]

Fioralba Cakoni, Pu-Zhao Kow, Jenn-Nan Wang. The interior transmission eigenvalue problem for elastic waves in media with obstacles. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020075

[6]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[7]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[8]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[9]

Yongge Tian, Pengyang Xie. Simultaneous optimal predictions under two seemingly unrelated linear random-effects models. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020168

[10]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

[11]

Chao Wang, Qihuai Liu, Zhiguo Wang. Periodic bouncing solutions for Hill's type sub-linear oscillators with obstacles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 281-300. doi: 10.3934/cpaa.2020266

[12]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[13]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[14]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[15]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[16]

Hongguang Ma, Xiang Li. Multi-period hazardous waste collection planning with consideration of risk stability. Journal of Industrial & Management Optimization, 2021, 17 (1) : 393-408. doi: 10.3934/jimo.2019117

[17]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[18]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[19]

Chao Xing, Jiaojiao Pan, Hong Luo. Stability and dynamic transition of a toxin-producing phytoplankton-zooplankton model with additional food. Communications on Pure & Applied Analysis, 2021, 20 (1) : 427-448. doi: 10.3934/cpaa.2020275

[20]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

 Impact Factor: 

Metrics

  • PDF downloads (27)
  • HTML views (0)
  • Cited by (0)

[Back to Top]