• Previous Article
    Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain
  • PROC Home
  • This Issue
  • Next Article
    Parabolic Monge-Ampere equations giving rise to a free boundary: The worn stone model
2015, 2015(special): 379-386. doi: 10.3934/proc.2015.0379

Steiner symmetrization for concave semilinear elliptic and parabolic equations and the obstacle problem

1. 

Instituto de Matemática Interdisciplinar and Dpto. de Matemática Aplicada, Facultad de Ciencias Matemáticas, Universidad Complutense de Madrid, Plaza de las Ciencias, 3, 28040 Madrid, Spain, Spain

Received  September 2014 Revised  January 2015 Published  November 2015

We extend some previous results in the literature on the Steiner rearrangement of linear second order elliptic equations to the semilinear concave parabolic problems and the obstacle problem.
Citation: J.I. Díaz, D. Gómez-Castro. Steiner symmetrization for concave semilinear elliptic and parabolic equations and the obstacle problem. Conference Publications, 2015, 2015 (special) : 379-386. doi: 10.3934/proc.2015.0379
References:
[1]

A. Alvino, J.I. Díaz, P.L. Lions and G.Trombetti, Elliptic Equations and Steiner Symmetrization,, Communications on Pure and Applied Mathematics, (1996), 217.   Google Scholar

[2]

H. Attouch, H. and A. Damlamian, Problemes d'evolution dans les Hilbert et applications,, J. Math. Pures Appl., 54 (1975), 53.   Google Scholar

[3]

C. Bandle, Isoperimetric Inequalities and Applications,, Pitman, (1980).   Google Scholar

[4]

P. Benilan, M. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces., Book in preparation., ().   Google Scholar

[5]

H. Brezis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert., Notes de Matematica, (1973).   Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2010).   Google Scholar

[7]

F. Chiacchio and V.M. Monetti, Comparison results for solutions of elliptic problems via Steiner symmetrization., Differential and Integral Equations 14(11) (2001), 14 (2001), 1351.   Google Scholar

[8]

F. Chiacchio, Steiner symmetrization for an elliptic problem with lower-order terms., Ricerche di Matematica, 53 (2004), 87.   Google Scholar

[9]

F. Chiacchio, Estimates for the first eigenfunction of linear eigenvalue problems via Steiner symmetrization,, Publ. Mat., 1 (2009), 47.   Google Scholar

[10]

J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries., Pitman, (1985).   Google Scholar

[11]

J.I. Díaz, Simetrización de problemas parablicos no lineales: Aplicación a ecuaciones de reacción difusión., Memorias de la Real Acad. de Ciencias Exactas, (1991).   Google Scholar

[12]

J.I. Díaz and D. Gómez-Castro, On the effectiveness of wastewater cylindrical reactors: an analysis through Steiner symmetrization., Pure and Applied Geophysics. DOI: 10.1007/s00024-015-1124-8 (2015)., (2015), 00024.   Google Scholar

[13]

V. Ferone and A. Mercaldo, A second order derivation formula for functions defined by integrals,, C.R. Acad. Sci. Paris, 236 (1998), 549.   Google Scholar

[14]

J. Mossino, and J.M. Rakotoson, Isoperimetric inequalities in parabolic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1986), 51.   Google Scholar

[15]

T. Nagai, Global existence and decay estimates of solutions to a parabolic-elliptic system of drift-diffusion type in $\mathbb{ R}^{2}$,, Differential Integral Equations 24(1/2) (2011), 24 (2011), 29.   Google Scholar

[16]

P.-A. Vuillermot, W.F. Wreszinski and V.A.Zagrebnov, A Trotter-Kato Product Formula for a Class of Non-Autonomous Evolution Equations,, Trends in Nonlinear Analysis: in Honour of Professor V. Lakshmikantham, 69 (2008), 1067.   Google Scholar

show all references

References:
[1]

A. Alvino, J.I. Díaz, P.L. Lions and G.Trombetti, Elliptic Equations and Steiner Symmetrization,, Communications on Pure and Applied Mathematics, (1996), 217.   Google Scholar

[2]

H. Attouch, H. and A. Damlamian, Problemes d'evolution dans les Hilbert et applications,, J. Math. Pures Appl., 54 (1975), 53.   Google Scholar

[3]

C. Bandle, Isoperimetric Inequalities and Applications,, Pitman, (1980).   Google Scholar

[4]

P. Benilan, M. Crandall and A. Pazy, Nonlinear evolution equations in Banach spaces., Book in preparation., ().   Google Scholar

[5]

H. Brezis, Operateurs Maximaux Monotones et Semi-groupes de Contractions dans les Espaces de Hilbert., Notes de Matematica, (1973).   Google Scholar

[6]

H. Brezis, Functional Analysis, Sobolev Spaces and Partial Differential Equations,, Springer, (2010).   Google Scholar

[7]

F. Chiacchio and V.M. Monetti, Comparison results for solutions of elliptic problems via Steiner symmetrization., Differential and Integral Equations 14(11) (2001), 14 (2001), 1351.   Google Scholar

[8]

F. Chiacchio, Steiner symmetrization for an elliptic problem with lower-order terms., Ricerche di Matematica, 53 (2004), 87.   Google Scholar

[9]

F. Chiacchio, Estimates for the first eigenfunction of linear eigenvalue problems via Steiner symmetrization,, Publ. Mat., 1 (2009), 47.   Google Scholar

[10]

J. I. Díaz, Nonlinear Partial Differential Equations and Free Boundaries., Pitman, (1985).   Google Scholar

[11]

J.I. Díaz, Simetrización de problemas parablicos no lineales: Aplicación a ecuaciones de reacción difusión., Memorias de la Real Acad. de Ciencias Exactas, (1991).   Google Scholar

[12]

J.I. Díaz and D. Gómez-Castro, On the effectiveness of wastewater cylindrical reactors: an analysis through Steiner symmetrization., Pure and Applied Geophysics. DOI: 10.1007/s00024-015-1124-8 (2015)., (2015), 00024.   Google Scholar

[13]

V. Ferone and A. Mercaldo, A second order derivation formula for functions defined by integrals,, C.R. Acad. Sci. Paris, 236 (1998), 549.   Google Scholar

[14]

J. Mossino, and J.M. Rakotoson, Isoperimetric inequalities in parabolic equations,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 13 (1986), 51.   Google Scholar

[15]

T. Nagai, Global existence and decay estimates of solutions to a parabolic-elliptic system of drift-diffusion type in $\mathbb{ R}^{2}$,, Differential Integral Equations 24(1/2) (2011), 24 (2011), 29.   Google Scholar

[16]

P.-A. Vuillermot, W.F. Wreszinski and V.A.Zagrebnov, A Trotter-Kato Product Formula for a Class of Non-Autonomous Evolution Equations,, Trends in Nonlinear Analysis: in Honour of Professor V. Lakshmikantham, 69 (2008), 1067.   Google Scholar

[1]

Juliana Fernandes, Liliane Maia. Blow-up and bounded solutions for a semilinear parabolic problem in a saturable medium. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1297-1318. doi: 10.3934/dcds.2020318

[2]

Nguyen Huy Tuan, Vo Van Au, Runzhang Xu. Semilinear Caputo time-fractional pseudo-parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020282

[3]

Yunfeng Jia, Yi Li, Jianhua Wu, Hong-Kun Xu. Cauchy problem of semilinear inhomogeneous elliptic equations of Matukuma-type with multiple growth terms. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3485-3507. doi: 10.3934/dcds.2019227

[4]

Vo Van Au, Mokhtar Kirane, Nguyen Huy Tuan. On a terminal value problem for a system of parabolic equations with nonlinear-nonlocal diffusion terms. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1579-1613. doi: 10.3934/dcdsb.2020174

[5]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[6]

Pierre Baras. A generalization of a criterion for the existence of solutions to semilinear elliptic equations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 465-504. doi: 10.3934/dcdss.2020439

[7]

Do Lan. Regularity and stability analysis for semilinear generalized Rayleigh-Stokes equations. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021002

[8]

Vo Van Au, Hossein Jafari, Zakia Hammouch, Nguyen Huy Tuan. On a final value problem for a nonlinear fractional pseudo-parabolic equation. Electronic Research Archive, 2021, 29 (1) : 1709-1734. doi: 10.3934/era.2020088

[9]

Stanislav Nikolaevich Antontsev, Serik Ersultanovich Aitzhanov, Guzel Rashitkhuzhakyzy Ashurova. An inverse problem for the pseudo-parabolic equation with p-Laplacian. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021005

[10]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[11]

Nguyen Anh Tuan, Donal O'Regan, Dumitru Baleanu, Nguyen H. Tuan. On time fractional pseudo-parabolic equations with nonlocal integral conditions. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020109

[12]

Jian Zhang, Tony T. Lee, Tong Ye, Liang Huang. An approximate mean queue length formula for queueing systems with varying service rate. Journal of Industrial & Management Optimization, 2021, 17 (1) : 185-204. doi: 10.3934/jimo.2019106

[13]

Nguyen Huy Tuan. On an initial and final value problem for fractional nonclassical diffusion equations of Kirchhoff type. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020354

[14]

Nguyen Huu Can, Nguyen Huy Tuan, Donal O'Regan, Vo Van Au. On a final value problem for a class of nonlinear hyperbolic equations with damping term. Evolution Equations & Control Theory, 2021, 10 (1) : 103-127. doi: 10.3934/eect.2020053

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[17]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[18]

Li Cai, Fubao Zhang. The Brezis-Nirenberg type double critical problem for a class of Schrödinger-Poisson equations. Electronic Research Archive, , () : -. doi: 10.3934/era.2020125

[19]

Amru Hussein, Martin Saal, Marc Wrona. Primitive equations with horizontal viscosity: The initial value and The time-periodic problem for physical boundary conditions. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020398

[20]

Pengyu Chen, Yongxiang Li, Xuping Zhang. Cauchy problem for stochastic non-autonomous evolution equations governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1531-1547. doi: 10.3934/dcdsb.2020171

 Impact Factor: 

Metrics

  • PDF downloads (60)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]