• Previous Article
    Existence and uniqueness of positive solutions for singular biharmonic elliptic systems
  • PROC Home
  • This Issue
  • Next Article
    Global existence and low Mach number limit to the 3D compressible magnetohydrodynamic equations in a bounded domain
2015, 2015(special): 395-399. doi: 10.3934/proc.2015.0395

A regularity criterion for 3D density-dependent MHD system with zero viscosity

1. 

Department of Applied Mathematics, Nanjing Forestry University, Nanjing, 210037

2. 

Department of Applied Physics, Waseda University, Tokyo, 169-8555

Received  September 2014 Revised  November 2014 Published  November 2015

This paper proves a regularity criterion $\nabla u,\nabla b\in L^\infty(0,T;L^\infty)$ for 3D density-dependent MHD system with zero viscosity and positive initial density.
Citation: Jishan Fan, Tohru Ozawa. A regularity criterion for 3D density-dependent MHD system with zero viscosity. Conference Publications, 2015, 2015 (special) : 395-399. doi: 10.3934/proc.2015.0395
References:
[1]

H. Abidi, M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces., Proc. Roy. Soc. Edinburgh Sect. A 138(3)(2008) 447-476., (2008), 447.   Google Scholar

[2]

J. Fan, F. Li, G. Nakamura, Z. Tan, Regularity criteria for the three-dimensional magnetohydrodynamic equations., J. Diff. Equ. 256(2014) 2858-2875., (2014), 2858.   Google Scholar

[3]

J. Fan, Y. Zhou, Uniform local well-posedness for the density-dependent magnetohydrodynamic equations., Appl. Math. Lett. 24(11)(2011) 1945-1949., (2011), 1945.   Google Scholar

[4]

D. Chae, J. Lee, Local existence and blow-up criterion of the inhomogeneous Euler equations., J. Math. Fluid Mech. 5(2003) 144-165., (2003), 144.   Google Scholar

[5]

T. Kato, G. Ponce, Commutator estimates and the Euler and the Navier-Stokes equations., Comm. Pure Appl. Math. 41(1988) 891-907., (1988), 891.   Google Scholar

show all references

References:
[1]

H. Abidi, M. Paicu, Global existence for the magnetohydrodynamic system in critical spaces., Proc. Roy. Soc. Edinburgh Sect. A 138(3)(2008) 447-476., (2008), 447.   Google Scholar

[2]

J. Fan, F. Li, G. Nakamura, Z. Tan, Regularity criteria for the three-dimensional magnetohydrodynamic equations., J. Diff. Equ. 256(2014) 2858-2875., (2014), 2858.   Google Scholar

[3]

J. Fan, Y. Zhou, Uniform local well-posedness for the density-dependent magnetohydrodynamic equations., Appl. Math. Lett. 24(11)(2011) 1945-1949., (2011), 1945.   Google Scholar

[4]

D. Chae, J. Lee, Local existence and blow-up criterion of the inhomogeneous Euler equations., J. Math. Fluid Mech. 5(2003) 144-165., (2003), 144.   Google Scholar

[5]

T. Kato, G. Ponce, Commutator estimates and the Euler and the Navier-Stokes equations., Comm. Pure Appl. Math. 41(1988) 891-907., (1988), 891.   Google Scholar

[1]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[2]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[3]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[4]

Mengni Li. Global regularity for a class of Monge-Ampère type equations with nonzero boundary conditions. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020267

 Impact Factor: 

Metrics

  • PDF downloads (59)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]