-
Previous Article
On explicit lower bounds and blow-up times in a model of chemotaxis
- PROC Home
- This Issue
-
Next Article
A regularity criterion for 3D density-dependent MHD system with zero viscosity
Existence and uniqueness of positive solutions for singular biharmonic elliptic systems
1. | Departamento de Matemática - ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-330, Minas Gerais, Brazil |
References:
show all references
References:
[1] |
José Francisco de Oliveira, João Marcos do Ó, Pedro Ubilla. Hardy-Sobolev type inequality and supercritical extremal problem. Discrete and Continuous Dynamical Systems, 2019, 39 (6) : 3345-3364. doi: 10.3934/dcds.2019138 |
[2] |
Jinhui Chen, Haitao Yang. A result on Hardy-Sobolev critical elliptic equations with boundary singularities. Communications on Pure and Applied Analysis, 2007, 6 (1) : 191-201. doi: 10.3934/cpaa.2007.6.191 |
[3] |
Jann-Long Chern, Yong-Li Tang, Chuan-Jen Chyan, Yi-Jung Chen. On the uniqueness of singular solutions for a Hardy-Sobolev equation. Conference Publications, 2013, 2013 (special) : 123-128. doi: 10.3934/proc.2013.2013.123 |
[4] |
Wei Dai, Zhao Liu, Guozhen Lu. Hardy-Sobolev type integral systems with Dirichlet boundary conditions in a half space. Communications on Pure and Applied Analysis, 2017, 16 (4) : 1253-1264. doi: 10.3934/cpaa.2017061 |
[5] |
Masato Hashizume, Chun-Hsiung Hsia, Gyeongha Hwang. On the Neumann problem of Hardy-Sobolev critical equations with the multiple singularities. Communications on Pure and Applied Analysis, 2019, 18 (1) : 301-322. doi: 10.3934/cpaa.2019016 |
[6] |
Xiaomei Sun, Wenyi Chen. Positive solutions for singular elliptic equations with critical Hardy-Sobolev exponent. Communications on Pure and Applied Analysis, 2011, 10 (2) : 527-540. doi: 10.3934/cpaa.2011.10.527 |
[7] |
Yu Zheng, Carlos A. Santos, Zifei Shen, Minbo Yang. Least energy solutions for coupled hartree system with hardy-littlewood-sobolev critical exponents. Communications on Pure and Applied Analysis, 2020, 19 (1) : 329-369. doi: 10.3934/cpaa.2020018 |
[8] |
Zongming Guo, Juncheng Wei. Liouville type results and regularity of the extremal solutions of biharmonic equation with negative exponents. Discrete and Continuous Dynamical Systems, 2014, 34 (6) : 2561-2580. doi: 10.3934/dcds.2014.34.2561 |
[9] |
Ze Cheng, Congming Li. An extended discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 1951-1959. doi: 10.3934/dcds.2014.34.1951 |
[10] |
Yutian Lei, Zhongxue Lü. Axisymmetry of locally bounded solutions to an Euler-Lagrange system of the weighted Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2013, 33 (5) : 1987-2005. doi: 10.3934/dcds.2013.33.1987 |
[11] |
Guoqing Zhang, Jia-yu Shao, Sanyang Liu. Linking solutions for N-laplace elliptic equations with Hardy-Sobolev operator and indefinite weights. Communications on Pure and Applied Analysis, 2011, 10 (2) : 571-581. doi: 10.3934/cpaa.2011.10.571 |
[12] |
Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037 |
[13] |
Yinbin Deng, Qi Gao, Dandan Zhang. Nodal solutions for Laplace equations with critical Sobolev and Hardy exponents on $R^N$. Discrete and Continuous Dynamical Systems, 2007, 19 (1) : 211-233. doi: 10.3934/dcds.2007.19.211 |
[14] |
Xiaorong Luo, Anmin Mao, Yanbin Sang. Nonlinear Choquard equations with Hardy-Littlewood-Sobolev critical exponents. Communications on Pure and Applied Analysis, 2021, 20 (4) : 1319-1345. doi: 10.3934/cpaa.2021022 |
[15] |
Genggeng Huang, Congming Li, Ximing Yin. Existence of the maximizing pair for the discrete Hardy-Littlewood-Sobolev inequality. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 935-942. doi: 10.3934/dcds.2015.35.935 |
[16] |
Yutian Lei. On the integral systems with negative exponents. Discrete and Continuous Dynamical Systems, 2015, 35 (3) : 1039-1057. doi: 10.3934/dcds.2015.35.1039 |
[17] |
Yanfang Peng, Jing Yang. Sign-changing solutions to elliptic problems with two critical Sobolev-Hardy exponents. Communications on Pure and Applied Analysis, 2015, 14 (2) : 439-455. doi: 10.3934/cpaa.2015.14.439 |
[18] |
Minbo Yang, Fukun Zhao, Shunneng Zhao. Classification of solutions to a nonlocal equation with doubly Hardy-Littlewood-Sobolev critical exponents. Discrete and Continuous Dynamical Systems, 2021, 41 (11) : 5209-5241. doi: 10.3934/dcds.2021074 |
[19] |
Pasquale Candito, Giovanni Molica Bisci. Multiple solutions for a Navier boundary value problem involving the $p$--biharmonic operator. Discrete and Continuous Dynamical Systems - S, 2012, 5 (4) : 741-751. doi: 10.3934/dcdss.2012.5.741 |
[20] |
Kehan Shi, Ying Wen. Nonlocal biharmonic evolution equations with Dirichlet and Navier boundary conditions. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022089 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]