2015, 2015(special): 400-408. doi: 10.3934/proc.2015.0400

Existence and uniqueness of positive solutions for singular biharmonic elliptic systems

1. 

Departamento de Matemática - ICE, Universidade Federal de Juiz de Fora, Juiz de Fora, CEP 36036-330, Minas Gerais, Brazil

Received  September 2014 Revised  January 2015 Published  November 2015

In this paper we prove existence and uniqueness of positive solutions of nonlinear singular biharmonic elliptic system in smooth bounded domains, with coupling of the equations, under Navier boundary condition. The solution is constructed through an approximating process based on a priori estimates, regularity up to the boundary and Hardy-Sobolev inequality.
Citation: Luiz F. O. Faria. Existence and uniqueness of positive solutions for singular biharmonic elliptic systems. Conference Publications, 2015, 2015 (special) : 400-408. doi: 10.3934/proc.2015.0400
References:
[1]

S. Agmon, The $L_p$ approach to the Dirichlet problem. I. Regularity theorems,, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 405.   Google Scholar

[2]

C. O. Alves and F. J. S. A. Corrêa., On the existence of positive solutions for a class of singular systems involving quasilinear operators,, Appl. Math. and Computation, 185 (2007), 727.   Google Scholar

[3]

C. O. Alves and D. G. de Figueiredo, Nonvariational elliptic systems via Galerkin methods,, Function spaces, (2003), 47.   Google Scholar

[4]

A. Alvino, V. Ferone and G. Trombetti, On the best constant in a HardySobolev inequality,, Appl. Anal., 85 (2006), 171.   Google Scholar

[5]

E. Berchio and F. Gazzola, Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities,, Electron. J. Differential Equations (2005), (2005).   Google Scholar

[6]

F. Bernis, J. García Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order,, Adv. Differential Equations, 1 (1996), 219.   Google Scholar

[7]

J. F. Bonder and J. D. Rossi, A fourth order elliptic equation with nonlinear boundary conditions,, Nonlinear Anal., 49 (2002), 1037.   Google Scholar

[8]

P. C. Carrião, L. F. O. Faria and O.H. Miyagaki, A biharmonic elliptic problem with dependence on the gradient and the Laplacian,, Electron. J. Differential Equations (2009), (2009).   Google Scholar

[9]

S. Chandrasekhar, An introduction to the study of stellar structure,, Dover Publications, (1957).   Google Scholar

[10]

Q- Choi and T. Jung, Multiplicity of solutions and source terms in a fourth order nonlinear elliptic equation,, Acta Math. Sci., 19 (1999), 361.   Google Scholar

[11]

Y. S. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents,, J. Differential Equations, 246 (2009), 216.   Google Scholar

[12]

D. G. de Figueiredo, Semilinear elliptic systems: a survey of superlinear problems,, Resenhas 2 (1996), 2 (1996), 373.   Google Scholar

[13]

Y. Deng and G. Wang, On inhomogeneous biharmonic equations involving critical exponents,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 925.   Google Scholar

[14]

W. Fulks and J.S. Maybee, A singular non-linear equation,, Osaka Math. J., 12 (1960), 1.   Google Scholar

[15]

M. Ghergu, Lane-Emden systems with negative exponents,, J. Funct. Anal., 258 (2010), 3295.   Google Scholar

[16]

Y. G. Gu, Y. B. Deng and X. J. Wang, Existence of nontrivial solutions for critical semilinear biharmonic equations,, Systems Sci. Math. Sci., 7 (1994), 140.   Google Scholar

[17]

G. L. Hernandez and Y. Choi, Existence of solutions in a singular biharmonic nonlinear problem,, Proc. Edinburgh Math. Soc. (2), 36 (1993), 537.   Google Scholar

[18]

T. Jung and Q- Choi, Existence of nontrivial solutions of the nonlinear biharmonic system,, Korean J. Math., 16 (2008), 135.   Google Scholar

[19]

O. Kavian, Inegalité de Hardy-Sobolev et applications, Theése de Doctorate de 3eme cycle,, Université de Paris, (1978).   Google Scholar

[20]

S. Kesavan, Topics in functional analysis and application,, John Wiley & Sons, (1989).   Google Scholar

[21]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis,, SIAM Rev., 32 (1990), 537.   Google Scholar

[22]

T. F. Ma, Existence results for a model of nonlinear beam on elastic bearings,, Appl. Math. Lett., 13 (2000), 11.   Google Scholar

[23]

A. M. Micheletti, A. Pistoia and C. Saccon, Three solutions of a fourth order elliptic problem via variational theorems of mixed type,, Appl. Anal., 75 (2000), 43.   Google Scholar

[24]

R. C. A. M. Van der Vorst, Fourth-order elliptic equations with critical growth,, C. R. Acad. Sci. Paris Sr. I Math., 320 (1995), 295.   Google Scholar

[25]

R. C. A. M. Van der Vorst, Best constant for the embedding of the space $H^2(\Omega) \cap H_0^1(\Omega)$ into $L^{2N/N-4}(\Omega)$,, Differential Integral Equations, 6 (1993), 259.   Google Scholar

[26]

P. Villaggio, Mathematical models for elastic structures,, Cambridge University Press, (1997).   Google Scholar

[27]

W. Wang, A. Zang and P. Zhao, Multiplicity of solutions for a class of fourth elliptic equations,, Nonlinear Anal., 70 (2009), 4377.   Google Scholar

[28]

X. Z. Zeng and Y. B. Deng, Existence of multiple solutions for a semilinear biharmonic equation with critical exponent,, Acta Math. Sci. Ser. A Chin. Ed., 20 (2000), 547.   Google Scholar

[29]

J. H. Zhang and S. J. Li, Multiple nontrivial solutions for some fourth-order semilinear elliptic problems,, Nonlinear Anal., 60 (2005), 221.   Google Scholar

show all references

References:
[1]

S. Agmon, The $L_p$ approach to the Dirichlet problem. I. Regularity theorems,, Ann. Scuola Norm. Sup. Pisa, 13 (1959), 405.   Google Scholar

[2]

C. O. Alves and F. J. S. A. Corrêa., On the existence of positive solutions for a class of singular systems involving quasilinear operators,, Appl. Math. and Computation, 185 (2007), 727.   Google Scholar

[3]

C. O. Alves and D. G. de Figueiredo, Nonvariational elliptic systems via Galerkin methods,, Function spaces, (2003), 47.   Google Scholar

[4]

A. Alvino, V. Ferone and G. Trombetti, On the best constant in a HardySobolev inequality,, Appl. Anal., 85 (2006), 171.   Google Scholar

[5]

E. Berchio and F. Gazzola, Some remarks on biharmonic elliptic problems with positive, increasing and convex nonlinearities,, Electron. J. Differential Equations (2005), (2005).   Google Scholar

[6]

F. Bernis, J. García Azorero and I. Peral, Existence and multiplicity of nontrivial solutions in semilinear critical problems of fourth order,, Adv. Differential Equations, 1 (1996), 219.   Google Scholar

[7]

J. F. Bonder and J. D. Rossi, A fourth order elliptic equation with nonlinear boundary conditions,, Nonlinear Anal., 49 (2002), 1037.   Google Scholar

[8]

P. C. Carrião, L. F. O. Faria and O.H. Miyagaki, A biharmonic elliptic problem with dependence on the gradient and the Laplacian,, Electron. J. Differential Equations (2009), (2009).   Google Scholar

[9]

S. Chandrasekhar, An introduction to the study of stellar structure,, Dover Publications, (1957).   Google Scholar

[10]

Q- Choi and T. Jung, Multiplicity of solutions and source terms in a fourth order nonlinear elliptic equation,, Acta Math. Sci., 19 (1999), 361.   Google Scholar

[11]

Y. S. Choi and X. Xu, Nonlinear biharmonic equations with negative exponents,, J. Differential Equations, 246 (2009), 216.   Google Scholar

[12]

D. G. de Figueiredo, Semilinear elliptic systems: a survey of superlinear problems,, Resenhas 2 (1996), 2 (1996), 373.   Google Scholar

[13]

Y. Deng and G. Wang, On inhomogeneous biharmonic equations involving critical exponents,, Proc. Roy. Soc. Edinburgh Sect. A, 129 (1999), 925.   Google Scholar

[14]

W. Fulks and J.S. Maybee, A singular non-linear equation,, Osaka Math. J., 12 (1960), 1.   Google Scholar

[15]

M. Ghergu, Lane-Emden systems with negative exponents,, J. Funct. Anal., 258 (2010), 3295.   Google Scholar

[16]

Y. G. Gu, Y. B. Deng and X. J. Wang, Existence of nontrivial solutions for critical semilinear biharmonic equations,, Systems Sci. Math. Sci., 7 (1994), 140.   Google Scholar

[17]

G. L. Hernandez and Y. Choi, Existence of solutions in a singular biharmonic nonlinear problem,, Proc. Edinburgh Math. Soc. (2), 36 (1993), 537.   Google Scholar

[18]

T. Jung and Q- Choi, Existence of nontrivial solutions of the nonlinear biharmonic system,, Korean J. Math., 16 (2008), 135.   Google Scholar

[19]

O. Kavian, Inegalité de Hardy-Sobolev et applications, Theése de Doctorate de 3eme cycle,, Université de Paris, (1978).   Google Scholar

[20]

S. Kesavan, Topics in functional analysis and application,, John Wiley & Sons, (1989).   Google Scholar

[21]

A. C. Lazer and P. J. McKenna, Large-amplitude periodic oscillations in suspension bridges: some new connections with nonlinear analysis,, SIAM Rev., 32 (1990), 537.   Google Scholar

[22]

T. F. Ma, Existence results for a model of nonlinear beam on elastic bearings,, Appl. Math. Lett., 13 (2000), 11.   Google Scholar

[23]

A. M. Micheletti, A. Pistoia and C. Saccon, Three solutions of a fourth order elliptic problem via variational theorems of mixed type,, Appl. Anal., 75 (2000), 43.   Google Scholar

[24]

R. C. A. M. Van der Vorst, Fourth-order elliptic equations with critical growth,, C. R. Acad. Sci. Paris Sr. I Math., 320 (1995), 295.   Google Scholar

[25]

R. C. A. M. Van der Vorst, Best constant for the embedding of the space $H^2(\Omega) \cap H_0^1(\Omega)$ into $L^{2N/N-4}(\Omega)$,, Differential Integral Equations, 6 (1993), 259.   Google Scholar

[26]

P. Villaggio, Mathematical models for elastic structures,, Cambridge University Press, (1997).   Google Scholar

[27]

W. Wang, A. Zang and P. Zhao, Multiplicity of solutions for a class of fourth elliptic equations,, Nonlinear Anal., 70 (2009), 4377.   Google Scholar

[28]

X. Z. Zeng and Y. B. Deng, Existence of multiple solutions for a semilinear biharmonic equation with critical exponent,, Acta Math. Sci. Ser. A Chin. Ed., 20 (2000), 547.   Google Scholar

[29]

J. H. Zhang and S. J. Li, Multiple nontrivial solutions for some fourth-order semilinear elliptic problems,, Nonlinear Anal., 60 (2005), 221.   Google Scholar

[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Haruki Umakoshi. A semilinear heat equation with initial data in negative Sobolev spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 745-767. doi: 10.3934/dcdss.2020365

[3]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

[4]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[5]

Anna Anop, Robert Denk, Aleksandr Murach. Elliptic problems with rough boundary data in generalized Sobolev spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020286

[6]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[7]

Lingju Kong, Roger Nichols. On principal eigenvalues of biharmonic systems. Communications on Pure & Applied Analysis, 2021, 20 (1) : 1-15. doi: 10.3934/cpaa.2020254

[8]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[9]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control & Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[10]

Md. Masum Murshed, Kouta Futai, Masato Kimura, Hirofumi Notsu. Theoretical and numerical studies for energy estimates of the shallow water equations with a transmission boundary condition. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 1063-1078. doi: 10.3934/dcdss.2020230

[11]

Tomáš Bodnár, Philippe Fraunié, Petr Knobloch, Hynek Řezníček. Numerical evaluation of artificial boundary condition for wall-bounded stably stratified flows. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 785-801. doi: 10.3934/dcdss.2020333

[12]

Xiaofeng Ren, David Shoup. The impact of the domain boundary on an inhibitory system: Interior discs and boundary half discs. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3957-3979. doi: 10.3934/dcds.2020048

[13]

Bopeng Rao, Zhuangyi Liu. A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 399-414. doi: 10.3934/dcds.2009.23.399

[14]

Franck Davhys Reval Langa, Morgan Pierre. A doubly splitting scheme for the Caginalp system with singular potentials and dynamic boundary conditions. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 653-676. doi: 10.3934/dcdss.2020353

[15]

Mikhail I. Belishev, Sergey A. Simonov. A canonical model of the one-dimensional dynamical Dirac system with boundary control. Evolution Equations & Control Theory, 2021  doi: 10.3934/eect.2021003

[16]

Pavel Eichler, Radek Fučík, Robert Straka. Computational study of immersed boundary - lattice Boltzmann method for fluid-structure interaction. Discrete & Continuous Dynamical Systems - S, 2021, 14 (3) : 819-833. doi: 10.3934/dcdss.2020349

[17]

Duy Phan. Approximate controllability for Navier–Stokes equations in $ \rm3D $ cylinders under Lions boundary conditions by an explicit saturating set. Evolution Equations & Control Theory, 2021, 10 (1) : 199-227. doi: 10.3934/eect.2020062

[18]

Fang Li, Bo You. On the dimension of global attractor for the Cahn-Hilliard-Brinkman system with dynamic boundary conditions. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021024

[19]

Ferenc Weisz. Dual spaces of mixed-norm martingale hardy spaces. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020285

[20]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

 Impact Factor: 

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]