2015, 2015(special): 409-417. doi: 10.3934/proc.2015.0409

On explicit lower bounds and blow-up times in a model of chemotaxis

1. 

Department of Mathematics and Computer Science, University of Cagliari, V. Ospedale 72, 09124. Cagliari, Italy

2. 

Department of Mathematics and Computer Science, University of Cagliari, V. le Merello 92, 09123. Cagliari, Italy, Italy

Received  September 2014 Revised  October 2014 Published  November 2015

This paper is concerned with a parabolic Keller-Segel system in $\mathbb{R}^n$, with $n=2$ or $3$, under Neumann boundary conditions. First, important theoretical and general results dealing with lower bounds for blow-up time estimates are summarized and analyzed. Next, a resolution method is proposed and used to both compute the real blow-up times of such unbounded solutions and analyze and discuss some of their properties.
Citation: Maria Antonietta Farina, Monica Marras, Giuseppe Viglialoro. On explicit lower bounds and blow-up times in a model of chemotaxis. Conference Publications, 2015, 2015 (special) : 409-417. doi: 10.3934/proc.2015.0409
References:
[1]

G. Acosta, R. G: Duran and J.D. Rossi, An adaptive time step procedure for a parabolic problem with blow-up,, Computing., 68 (2002), 343.   Google Scholar

[2]

C. Bandle and H. Brunner, Blowup in diffusion equations: A survey,, J. Comput. Appl. Math., 97 (1998), 3.   Google Scholar

[3]

M.C. Carrisi, A further condition in the extended macroscopic approach to relativistic gases,, Int. J. Pure Appl. Math., 67 (2011), 259.   Google Scholar

[4]

M.C. Carrisi and S. Mignemi, Snyder-de Sitter model from two-time physics,, Phys. Rev. D., 82 (2010).   Google Scholar

[5]

J. M. Díaz Moreno, C. García Vázquez, M. T. González Montesinos, F. Ortegón Gallego and G. Viglialoro, Mathematical modeling of heat treatment for a steering rack including mechanical effects,, J. Numer. Math., 20 (2012), 3.   Google Scholar

[6]

F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuda, FreeFem++ (Third Edition, Version 3.19),, Laboratoire Jacques-Louis Lions, ().   Google Scholar

[7]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences,, I. Jahresber. Deutsche Math. Verein., 105 (2003), 103.   Google Scholar

[8]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.   Google Scholar

[9]

E. F. Keller and A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol., 26 (1970), 399.   Google Scholar

[10]

S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods,, Springer-Verlag, (2003).   Google Scholar

[11]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Num. Funct. Anal. Optim., 32 (2011).   Google Scholar

[12]

M. Marras and S. Vernier Piro, Bounds for blow-up time in nonlinear parabolic systems,, Discret. Contin. Dyn. Syst., (2011), 1025.   Google Scholar

[13]

M. Marras and S. Vernier Piro, Blow-up phenomena in reaction-diffusion systems,, Discret. Contin. Dyn. Syst., 32 (2012), 4001.   Google Scholar

[14]

M. Marras, S. Vernier-Piro and G. Viglialoro, Estimate from below of blow-up time in a parabolic system with gradient term,, Int. J. Pure Appl. Math., 93 (2014), 297.   Google Scholar

[15]

M. Marras, S. Vernier-Piro and G. Viglialoro, Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system,, Dynamical Systems, (2015), 809.   Google Scholar

[16]

L. E. Payne and G. A. Philippin, Blow-up Phenomena for a Class of Parabolic Systems with Time Dependent Coefficients,, Appl. Math., 3 (2012), 325.   Google Scholar

[17]

L. E. Payne and J.C. Song, Lower bound for blow-up in a model of chemotaxis,, J. Math. Anal. Appl., 385 (2012), 672.   Google Scholar

[18]

G. Viglialoro and J. Murcia, A singular elliptic problem related to the membrane equilibrium equations,, Int. J. Comput. Math., 90 (2013), 2185.   Google Scholar

[19]

G. Viglialoro, On the blow-up time of a parabolic system with damping terms,, C. R. Acad. Bulg. Sci., 67 (2014), 1223.   Google Scholar

show all references

References:
[1]

G. Acosta, R. G: Duran and J.D. Rossi, An adaptive time step procedure for a parabolic problem with blow-up,, Computing., 68 (2002), 343.   Google Scholar

[2]

C. Bandle and H. Brunner, Blowup in diffusion equations: A survey,, J. Comput. Appl. Math., 97 (1998), 3.   Google Scholar

[3]

M.C. Carrisi, A further condition in the extended macroscopic approach to relativistic gases,, Int. J. Pure Appl. Math., 67 (2011), 259.   Google Scholar

[4]

M.C. Carrisi and S. Mignemi, Snyder-de Sitter model from two-time physics,, Phys. Rev. D., 82 (2010).   Google Scholar

[5]

J. M. Díaz Moreno, C. García Vázquez, M. T. González Montesinos, F. Ortegón Gallego and G. Viglialoro, Mathematical modeling of heat treatment for a steering rack including mechanical effects,, J. Numer. Math., 20 (2012), 3.   Google Scholar

[6]

F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuda, FreeFem++ (Third Edition, Version 3.19),, Laboratoire Jacques-Louis Lions, ().   Google Scholar

[7]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences,, I. Jahresber. Deutsche Math. Verein., 105 (2003), 103.   Google Scholar

[8]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819.   Google Scholar

[9]

E. F. Keller and A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol., 26 (1970), 399.   Google Scholar

[10]

S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods,, Springer-Verlag, (2003).   Google Scholar

[11]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Num. Funct. Anal. Optim., 32 (2011).   Google Scholar

[12]

M. Marras and S. Vernier Piro, Bounds for blow-up time in nonlinear parabolic systems,, Discret. Contin. Dyn. Syst., (2011), 1025.   Google Scholar

[13]

M. Marras and S. Vernier Piro, Blow-up phenomena in reaction-diffusion systems,, Discret. Contin. Dyn. Syst., 32 (2012), 4001.   Google Scholar

[14]

M. Marras, S. Vernier-Piro and G. Viglialoro, Estimate from below of blow-up time in a parabolic system with gradient term,, Int. J. Pure Appl. Math., 93 (2014), 297.   Google Scholar

[15]

M. Marras, S. Vernier-Piro and G. Viglialoro, Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system,, Dynamical Systems, (2015), 809.   Google Scholar

[16]

L. E. Payne and G. A. Philippin, Blow-up Phenomena for a Class of Parabolic Systems with Time Dependent Coefficients,, Appl. Math., 3 (2012), 325.   Google Scholar

[17]

L. E. Payne and J.C. Song, Lower bound for blow-up in a model of chemotaxis,, J. Math. Anal. Appl., 385 (2012), 672.   Google Scholar

[18]

G. Viglialoro and J. Murcia, A singular elliptic problem related to the membrane equilibrium equations,, Int. J. Comput. Math., 90 (2013), 2185.   Google Scholar

[19]

G. Viglialoro, On the blow-up time of a parabolic system with damping terms,, C. R. Acad. Bulg. Sci., 67 (2014), 1223.   Google Scholar

[1]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[2]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020264

[3]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[4]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[7]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[8]

Zhiyan Ding, Qin Li, Jianfeng Lu. Ensemble Kalman Inversion for nonlinear problems: Weights, consistency, and variance bounds. Foundations of Data Science, 2020  doi: 10.3934/fods.2020018

[9]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[10]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[11]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[12]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[13]

Noah Stevenson, Ian Tice. A truncated real interpolation method and characterizations of screened Sobolev spaces. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5509-5566. doi: 10.3934/cpaa.2020250

[14]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[15]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[16]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[17]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[18]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[19]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[20]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

 Impact Factor: 

Metrics

  • PDF downloads (86)
  • HTML views (0)
  • Cited by (1)

[Back to Top]