2015, 2015(special): 409-417. doi: 10.3934/proc.2015.0409

On explicit lower bounds and blow-up times in a model of chemotaxis

1. 

Department of Mathematics and Computer Science, University of Cagliari, V. Ospedale 72, 09124. Cagliari, Italy

2. 

Department of Mathematics and Computer Science, University of Cagliari, V. le Merello 92, 09123. Cagliari, Italy, Italy

Received  September 2014 Revised  October 2014 Published  November 2015

This paper is concerned with a parabolic Keller-Segel system in $\mathbb{R}^n$, with $n=2$ or $3$, under Neumann boundary conditions. First, important theoretical and general results dealing with lower bounds for blow-up time estimates are summarized and analyzed. Next, a resolution method is proposed and used to both compute the real blow-up times of such unbounded solutions and analyze and discuss some of their properties.
Citation: Maria Antonietta Farina, Monica Marras, Giuseppe Viglialoro. On explicit lower bounds and blow-up times in a model of chemotaxis. Conference Publications, 2015, 2015 (special) : 409-417. doi: 10.3934/proc.2015.0409
References:
[1]

G. Acosta, R. G: Duran and J.D. Rossi, An adaptive time step procedure for a parabolic problem with blow-up,, Computing., 68 (2002), 343. Google Scholar

[2]

C. Bandle and H. Brunner, Blowup in diffusion equations: A survey,, J. Comput. Appl. Math., 97 (1998), 3. Google Scholar

[3]

M.C. Carrisi, A further condition in the extended macroscopic approach to relativistic gases,, Int. J. Pure Appl. Math., 67 (2011), 259. Google Scholar

[4]

M.C. Carrisi and S. Mignemi, Snyder-de Sitter model from two-time physics,, Phys. Rev. D., 82 (2010). Google Scholar

[5]

J. M. Díaz Moreno, C. García Vázquez, M. T. González Montesinos, F. Ortegón Gallego and G. Viglialoro, Mathematical modeling of heat treatment for a steering rack including mechanical effects,, J. Numer. Math., 20 (2012), 3. Google Scholar

[6]

F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuda, FreeFem++ (Third Edition, Version 3.19),, Laboratoire Jacques-Louis Lions, (). Google Scholar

[7]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences,, I. Jahresber. Deutsche Math. Verein., 105 (2003), 103. Google Scholar

[8]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. Google Scholar

[9]

E. F. Keller and A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol., 26 (1970), 399. Google Scholar

[10]

S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods,, Springer-Verlag, (2003). Google Scholar

[11]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Num. Funct. Anal. Optim., 32 (2011). Google Scholar

[12]

M. Marras and S. Vernier Piro, Bounds for blow-up time in nonlinear parabolic systems,, Discret. Contin. Dyn. Syst., (2011), 1025. Google Scholar

[13]

M. Marras and S. Vernier Piro, Blow-up phenomena in reaction-diffusion systems,, Discret. Contin. Dyn. Syst., 32 (2012), 4001. Google Scholar

[14]

M. Marras, S. Vernier-Piro and G. Viglialoro, Estimate from below of blow-up time in a parabolic system with gradient term,, Int. J. Pure Appl. Math., 93 (2014), 297. Google Scholar

[15]

M. Marras, S. Vernier-Piro and G. Viglialoro, Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system,, Dynamical Systems, (2015), 809. Google Scholar

[16]

L. E. Payne and G. A. Philippin, Blow-up Phenomena for a Class of Parabolic Systems with Time Dependent Coefficients,, Appl. Math., 3 (2012), 325. Google Scholar

[17]

L. E. Payne and J.C. Song, Lower bound for blow-up in a model of chemotaxis,, J. Math. Anal. Appl., 385 (2012), 672. Google Scholar

[18]

G. Viglialoro and J. Murcia, A singular elliptic problem related to the membrane equilibrium equations,, Int. J. Comput. Math., 90 (2013), 2185. Google Scholar

[19]

G. Viglialoro, On the blow-up time of a parabolic system with damping terms,, C. R. Acad. Bulg. Sci., 67 (2014), 1223. Google Scholar

show all references

References:
[1]

G. Acosta, R. G: Duran and J.D. Rossi, An adaptive time step procedure for a parabolic problem with blow-up,, Computing., 68 (2002), 343. Google Scholar

[2]

C. Bandle and H. Brunner, Blowup in diffusion equations: A survey,, J. Comput. Appl. Math., 97 (1998), 3. Google Scholar

[3]

M.C. Carrisi, A further condition in the extended macroscopic approach to relativistic gases,, Int. J. Pure Appl. Math., 67 (2011), 259. Google Scholar

[4]

M.C. Carrisi and S. Mignemi, Snyder-de Sitter model from two-time physics,, Phys. Rev. D., 82 (2010). Google Scholar

[5]

J. M. Díaz Moreno, C. García Vázquez, M. T. González Montesinos, F. Ortegón Gallego and G. Viglialoro, Mathematical modeling of heat treatment for a steering rack including mechanical effects,, J. Numer. Math., 20 (2012), 3. Google Scholar

[6]

F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuda, FreeFem++ (Third Edition, Version 3.19),, Laboratoire Jacques-Louis Lions, (). Google Scholar

[7]

D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences,, I. Jahresber. Deutsche Math. Verein., 105 (2003), 103. Google Scholar

[8]

W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis,, Trans. Amer. Math. Soc., 329 (1992), 819. Google Scholar

[9]

E. F. Keller and A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol., 26 (1970), 399. Google Scholar

[10]

S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods,, Springer-Verlag, (2003). Google Scholar

[11]

M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions,, Num. Funct. Anal. Optim., 32 (2011). Google Scholar

[12]

M. Marras and S. Vernier Piro, Bounds for blow-up time in nonlinear parabolic systems,, Discret. Contin. Dyn. Syst., (2011), 1025. Google Scholar

[13]

M. Marras and S. Vernier Piro, Blow-up phenomena in reaction-diffusion systems,, Discret. Contin. Dyn. Syst., 32 (2012), 4001. Google Scholar

[14]

M. Marras, S. Vernier-Piro and G. Viglialoro, Estimate from below of blow-up time in a parabolic system with gradient term,, Int. J. Pure Appl. Math., 93 (2014), 297. Google Scholar

[15]

M. Marras, S. Vernier-Piro and G. Viglialoro, Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system,, Dynamical Systems, (2015), 809. Google Scholar

[16]

L. E. Payne and G. A. Philippin, Blow-up Phenomena for a Class of Parabolic Systems with Time Dependent Coefficients,, Appl. Math., 3 (2012), 325. Google Scholar

[17]

L. E. Payne and J.C. Song, Lower bound for blow-up in a model of chemotaxis,, J. Math. Anal. Appl., 385 (2012), 672. Google Scholar

[18]

G. Viglialoro and J. Murcia, A singular elliptic problem related to the membrane equilibrium equations,, Int. J. Comput. Math., 90 (2013), 2185. Google Scholar

[19]

G. Viglialoro, On the blow-up time of a parabolic system with damping terms,, C. R. Acad. Bulg. Sci., 67 (2014), 1223. Google Scholar

[1]

Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809

[2]

Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete & Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569

[3]

Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete & Continuous Dynamical Systems - S, 2018, 0 (0) : 233-255. doi: 10.3934/dcdss.2020013

[4]

Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure & Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243

[5]

Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025

[6]

Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete & Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029

[7]

Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078

[8]

Jean Dolbeault, Christian Schmeiser. The two-dimensional Keller-Segel model after blow-up. Discrete & Continuous Dynamical Systems - A, 2009, 25 (1) : 109-121. doi: 10.3934/dcds.2009.25.109

[9]

Vincent Calvez, Thomas O. Gallouët. Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up. Discrete & Continuous Dynamical Systems - A, 2016, 36 (3) : 1175-1208. doi: 10.3934/dcds.2016.36.1175

[10]

Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535

[11]

Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure & Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117

[12]

Juntang Ding, Xuhui Shen. Upper and lower bounds for the blow-up time in quasilinear reaction diffusion problems. Discrete & Continuous Dynamical Systems - B, 2018, 23 (10) : 4243-4254. doi: 10.3934/dcdsb.2018135

[13]

Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete & Continuous Dynamical Systems - A, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683

[14]

Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete & Continuous Dynamical Systems - A, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061

[15]

Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks & Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181

[16]

Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete & Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317

[17]

Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete & Continuous Dynamical Systems - A, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399

[18]

Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure & Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339

[19]

Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464

[20]

Zhiqing Liu, Zhong Bo Fang. Blow-up phenomena for a nonlocal quasilinear parabolic equation with time-dependent coefficients under nonlinear boundary flux. Discrete & Continuous Dynamical Systems - B, 2016, 21 (10) : 3619-3635. doi: 10.3934/dcdsb.2016113

 Impact Factor: 

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (1)

[Back to Top]