-
Previous Article
Singular limit of Allen--Cahn equation with constraint and its Lagrange multiplier
- PROC Home
- This Issue
-
Next Article
Existence and uniqueness of positive solutions for singular biharmonic elliptic systems
On explicit lower bounds and blow-up times in a model of chemotaxis
1. | Department of Mathematics and Computer Science, University of Cagliari, V. Ospedale 72, 09124. Cagliari, Italy |
2. | Department of Mathematics and Computer Science, University of Cagliari, V. le Merello 92, 09123. Cagliari, Italy, Italy |
References:
[1] |
G. Acosta, R. G: Duran and J.D. Rossi, An adaptive time step procedure for a parabolic problem with blow-up, Computing., 68 (2002), 343-373 |
[2] |
C. Bandle and H. Brunner, Blowup in diffusion equations: A survey, J. Comput. Appl. Math., {97} (1998), 3-22 |
[3] |
M.C. Carrisi, A further condition in the extended macroscopic approach to relativistic gases, Int. J. Pure Appl. Math., 67 (2011), 259-289 |
[4] |
M.C. Carrisi and S. Mignemi, Snyder-de Sitter model from two-time physics, Phys. Rev. D., 82, no. 105031 (2010), 5 pages |
[5] |
J. M. Díaz Moreno, C. García Vázquez, M. T. González Montesinos, F. Ortegón Gallego and G. Viglialoro, Mathematical modeling of heat treatment for a steering rack including mechanical effects, J. Numer. Math., 20(3-4) (2012), 215-232. |
[6] |
F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuda, FreeFem++ (Third Edition, Version 3.19), Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris, http://www.freefem.org/ff++/ |
[7] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I. Jahresber. Deutsche Math. Verein., 105 (2003), 103-165 |
[8] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824 |
[9] |
E. F. Keller and A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415 |
[10] |
S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods, Springer-Verlag, 2003 |
[11] |
M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions, Num. Funct. Anal. Optim., 32 (2011), 453- 468 |
[12] |
M. Marras and S. Vernier Piro, Bounds for blow-up time in nonlinear parabolic systems, Discret. Contin. Dyn. Syst., Suppl., (2011), 1025-1031 |
[13] |
M. Marras and S. Vernier Piro, Blow-up phenomena in reaction-diffusion systems, Discret. Contin. Dyn. Syst., 32 (2012), 4001-4014 |
[14] |
M. Marras, S. Vernier-Piro and G. Viglialoro, Estimate from below of blow-up time in a parabolic system with gradient term, Int. J. Pure Appl. Math., 93 (2014), 297-306 |
[15] |
M. Marras, S. Vernier-Piro and G. Viglialoro, Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system, Dynamical Systems, Differential Equations and Applications, AIMS Proceedings, 2015, (Madrid, 2014), 809-816. |
[16] |
L. E. Payne and G. A. Philippin, Blow-up Phenomena for a Class of Parabolic Systems with Time Dependent Coefficients, Appl. Math., 3 (2012), 325-330 |
[17] |
L. E. Payne and J.C. Song, Lower bound for blow-up in a model of chemotaxis, J. Math. Anal. Appl., 385 (2012), 672-676 |
[18] |
G. Viglialoro and J. Murcia, A singular elliptic problem related to the membrane equilibrium equations, Int. J. Comput. Math., 90(10) (2013), 2185-2196. |
[19] |
G. Viglialoro, On the blow-up time of a parabolic system with damping terms, C. R. Acad. Bulg. Sci., 67 (2014), 1223-1232 |
show all references
References:
[1] |
G. Acosta, R. G: Duran and J.D. Rossi, An adaptive time step procedure for a parabolic problem with blow-up, Computing., 68 (2002), 343-373 |
[2] |
C. Bandle and H. Brunner, Blowup in diffusion equations: A survey, J. Comput. Appl. Math., {97} (1998), 3-22 |
[3] |
M.C. Carrisi, A further condition in the extended macroscopic approach to relativistic gases, Int. J. Pure Appl. Math., 67 (2011), 259-289 |
[4] |
M.C. Carrisi and S. Mignemi, Snyder-de Sitter model from two-time physics, Phys. Rev. D., 82, no. 105031 (2010), 5 pages |
[5] |
J. M. Díaz Moreno, C. García Vázquez, M. T. González Montesinos, F. Ortegón Gallego and G. Viglialoro, Mathematical modeling of heat treatment for a steering rack including mechanical effects, J. Numer. Math., 20(3-4) (2012), 215-232. |
[6] |
F. Hecht, O. Pironneau, A. Le Hyaric and K. Ohtsuda, FreeFem++ (Third Edition, Version 3.19), Laboratoire Jacques-Louis Lions, Université Pierre et Marie Curie, Paris, http://www.freefem.org/ff++/ |
[7] |
D. Horstmann, From 1970 until present: The Keller-Segel model in chemotaxis and its consequences, I. Jahresber. Deutsche Math. Verein., 105 (2003), 103-165 |
[8] |
W. Jäger and S. Luckhaus, On explosions of solutions to a system of partial differential equations modelling chemotaxis, Trans. Amer. Math. Soc., 329 (1992), 819-824 |
[9] |
E. F. Keller and A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399-415 |
[10] |
S. Larsson and V. Thomée, Partial Differential Equations with Numerical Methods, Springer-Verlag, 2003 |
[11] |
M. Marras, Bounds for blow-up time in nonlinear parabolic systems under various boundary conditions, Num. Funct. Anal. Optim., 32 (2011), 453- 468 |
[12] |
M. Marras and S. Vernier Piro, Bounds for blow-up time in nonlinear parabolic systems, Discret. Contin. Dyn. Syst., Suppl., (2011), 1025-1031 |
[13] |
M. Marras and S. Vernier Piro, Blow-up phenomena in reaction-diffusion systems, Discret. Contin. Dyn. Syst., 32 (2012), 4001-4014 |
[14] |
M. Marras, S. Vernier-Piro and G. Viglialoro, Estimate from below of blow-up time in a parabolic system with gradient term, Int. J. Pure Appl. Math., 93 (2014), 297-306 |
[15] |
M. Marras, S. Vernier-Piro and G. Viglialoro, Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system, Dynamical Systems, Differential Equations and Applications, AIMS Proceedings, 2015, (Madrid, 2014), 809-816. |
[16] |
L. E. Payne and G. A. Philippin, Blow-up Phenomena for a Class of Parabolic Systems with Time Dependent Coefficients, Appl. Math., 3 (2012), 325-330 |
[17] |
L. E. Payne and J.C. Song, Lower bound for blow-up in a model of chemotaxis, J. Math. Anal. Appl., 385 (2012), 672-676 |
[18] |
G. Viglialoro and J. Murcia, A singular elliptic problem related to the membrane equilibrium equations, Int. J. Comput. Math., 90(10) (2013), 2185-2196. |
[19] |
G. Viglialoro, On the blow-up time of a parabolic system with damping terms, C. R. Acad. Bulg. Sci., 67 (2014), 1223-1232 |
[1] |
Monica Marras, Stella Vernier Piro, Giuseppe Viglialoro. Lower bounds for blow-up in a parabolic-parabolic Keller-Segel system. Conference Publications, 2015, 2015 (special) : 809-816. doi: 10.3934/proc.2015.0809 |
[2] |
Sachiko Ishida, Tomomi Yokota. Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type. Discrete and Continuous Dynamical Systems - B, 2013, 18 (10) : 2569-2596. doi: 10.3934/dcdsb.2013.18.2569 |
[3] |
Johannes Lankeit. Infinite time blow-up of many solutions to a general quasilinear parabolic-elliptic Keller-Segel system. Discrete and Continuous Dynamical Systems - S, 2020, 13 (2) : 233-255. doi: 10.3934/dcdss.2020013 |
[4] |
Miaoqing Tian, Sining Zheng. Global boundedness versus finite-time blow-up of solutions to a quasilinear fully parabolic Keller-Segel system of two species. Communications on Pure and Applied Analysis, 2016, 15 (1) : 243-260. doi: 10.3934/cpaa.2016.15.243 |
[5] |
Monica Marras, Stella Vernier Piro. Bounds for blow-up time in nonlinear parabolic systems. Conference Publications, 2011, 2011 (Special) : 1025-1031. doi: 10.3934/proc.2011.2011.1025 |
[6] |
Ansgar Jüngel, Oliver Leingang. Blow-up of solutions to semi-discrete parabolic-elliptic Keller-Segel models. Discrete and Continuous Dynamical Systems - B, 2019, 24 (9) : 4755-4782. doi: 10.3934/dcdsb.2019029 |
[7] |
Hao Yu, Wei Wang, Sining Zheng. Boundedness of solutions to a fully parabolic Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1635-1644. doi: 10.3934/dcdsb.2017078 |
[8] |
Jean Dolbeault, Christian Schmeiser. The two-dimensional Keller-Segel model after blow-up. Discrete and Continuous Dynamical Systems, 2009, 25 (1) : 109-121. doi: 10.3934/dcds.2009.25.109 |
[9] |
Vincent Calvez, Thomas O. Gallouët. Particle approximation of the one dimensional Keller-Segel equation, stability and rigidity of the blow-up. Discrete and Continuous Dynamical Systems, 2016, 36 (3) : 1175-1208. doi: 10.3934/dcds.2016.36.1175 |
[10] |
Monica Marras, Stella Vernier Piro. On global existence and bounds for blow-up time in nonlinear parabolic problems with time dependent coefficients. Conference Publications, 2013, 2013 (special) : 535-544. doi: 10.3934/proc.2013.2013.535 |
[11] |
Piotr Biler, Ignacio Guerra, Grzegorz Karch. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. Communications on Pure and Applied Analysis, 2015, 14 (6) : 2117-2126. doi: 10.3934/cpaa.2015.14.2117 |
[12] |
Juntang Ding, Xuhui Shen. Upper and lower bounds for the blow-up time in quasilinear reaction diffusion problems. Discrete and Continuous Dynamical Systems - B, 2018, 23 (10) : 4243-4254. doi: 10.3934/dcdsb.2018135 |
[13] |
Yuya Tanaka, Tomomi Yokota. Finite-time blow-up in a quasilinear degenerate parabolic–elliptic chemotaxis system with logistic source and nonlinear production. Discrete and Continuous Dynamical Systems - B, 2022 doi: 10.3934/dcdsb.2022075 |
[14] |
Jinhuan Wang, Li Chen, Liang Hong. Parabolic elliptic type Keller-Segel system on the whole space case. Discrete and Continuous Dynamical Systems, 2016, 36 (2) : 1061-1084. doi: 10.3934/dcds.2016.36.1061 |
[15] |
Huiling Li, Mingxin Wang. Properties of blow-up solutions to a parabolic system with nonlinear localized terms. Discrete and Continuous Dynamical Systems, 2005, 13 (3) : 683-700. doi: 10.3934/dcds.2005.13.683 |
[16] |
Kenneth H. Karlsen, Süleyman Ulusoy. On a hyperbolic Keller-Segel system with degenerate nonlinear fractional diffusion. Networks and Heterogeneous Media, 2016, 11 (1) : 181-201. doi: 10.3934/nhm.2016.11.181 |
[17] |
Hao Yu, Wei Wang, Sining Zheng. Global boundedness of solutions to a Keller-Segel system with nonlinear sensitivity. Discrete and Continuous Dynamical Systems - B, 2016, 21 (4) : 1317-1327. doi: 10.3934/dcdsb.2016.21.1317 |
[18] |
Victor A. Galaktionov, Juan-Luis Vázquez. The problem Of blow-up in nonlinear parabolic equations. Discrete and Continuous Dynamical Systems, 2002, 8 (2) : 399-433. doi: 10.3934/dcds.2002.8.399 |
[19] |
Norikazu Saito. Error analysis of a conservative finite-element approximation for the Keller-Segel system of chemotaxis. Communications on Pure and Applied Analysis, 2012, 11 (1) : 339-364. doi: 10.3934/cpaa.2012.11.339 |
[20] |
Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]