2015, 2015(special): 418-427. doi: 10.3934/proc.2015.0418

Singular limit of Allen--Cahn equation with constraint and its Lagrange multiplier

1. 

Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstrasse 39, 10117 Berlin, Germany

2. 

Department of Mathematics, Kyoto University of Education, Fuji 1, Fukakusa Fushimi-ku, Kyoto 612-8522

3. 

Department of Mathematics, Faculty of Engineering, Kanagawa University, 3-27-1 Rokkakubashi, Kanagawa-ku, 221-8686

Received  September 2014 Revised  January 2015 Published  November 2015

We consider the Allen--Cahn equation with a constraint. Our constraint is provided by the subdifferential of the indicator function on a closed interval, which is the multivalued function. In this paper we give the characterization of the Lagrange multiplier for our equation. Moreover, we consider the singular limit of our system and clarify the limit of the solution and the Lagrange multiplier for our problem.
Citation: Mohammad Hassan Farshbaf-Shaker, Takeshi Fukao, Noriaki Yamazaki. Singular limit of Allen--Cahn equation with constraint and its Lagrange multiplier. Conference Publications, 2015, 2015 (special) : 418-427. doi: 10.3934/proc.2015.0418
References:
[1]

S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta Metall., 27 (1979), 1084.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[2]

L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems,, Oxford Mathematical Monographs, (2000).   Google Scholar

[3]

V. Barbu, Nonlinear differential equations of monotone types in Banach spaces,, Springer Monographs in Mathematics, (2010).   Google Scholar

[4]

L. Blank, H. Garcke L. Sarbu and V. Styles, Primal-dual active set methods for Allen-Cahn variational inequalities with nonlocal constraints, Numer., Methods Partial Differential Equations, 29 (2013), 999.   Google Scholar

[5]

V. Barbu and T. Precupanu, Convexity and optimization in Banach spaces, Fourth edition,, Springer Monographs in Mathematics, (2012).   Google Scholar

[6]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland, (1973).   Google Scholar

[7]

H. Brézis, M. G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space,, Comm. Pure Appl. Math., 23 (1970), 123.   Google Scholar

[8]

L. Bronsard and R.V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics,, J. Differential Equations, 90 (1991), 211.   Google Scholar

[9]

X. Chen and C. M. Elliott, Asymptotics for a parabolic double obstacle problem,, Proc. Roy. Soc. London Ser. A, 444 (1994), 429.   Google Scholar

[10]

P. C. Fife, Dynamics of internal layers and diffusive interfaces,, CBMS-NSF Regional Conf. Ser. in Appl. Math., 53 (1988).   Google Scholar

[11]

T. Fukao and N. Kenmochi, Lagrange multipliers in variational inequalities for nonlinear operators of monotone type,, Adv. Math. Sci. Appl., 23 (2013), 545.   Google Scholar

[12]

A. Ito, Asymptotic stability of Allen-Cahn model for nonlinear Laplacian with constraints,, Adv. Math. Sci. Appl., 9 (1999), 137.   Google Scholar

[13]

A. Ito, N. Yamazaki and N. Kenmochi, Attractors of nonlinear evolution systems generated by time-dependent subdifferentials in Hilbert spaces,, Dynamical systems and differential equations, (1996), 327.   Google Scholar

[14]

K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications,, Advances in Design and Control, 15 (2008).   Google Scholar

[15]

N. Kenmochi and K. Shirakawa, Stability for a parabolic variational inequality associated with total variation functional,, Funkcial. Ekvac., 44 (2001), 119.   Google Scholar

[16]

T. Ohtsuka, K. Shirakawa and N. Yamazaki, Optimal control problem for Allen-Cahn type equation associated with total variation energy,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 159.   Google Scholar

[17]

M. Ôtani, Nonmonotone perturbations for nonlinear, parabolic equations associated with subdifferential operators,, Cauchy problems, 46 (1982), 268.   Google Scholar

[18]

K. Shirakawa and M. Kimura, Stability analysis for Allen-Cahn type equation associated with the total variation energy,, Nonlinear Anal., 60 (2005), 257.   Google Scholar

[19]

Y. Tonegawa, Integrality of varifolds in the singular limit of reaction-diffusion equations,, Hiroshima Math. J., 33 (2003), 323.   Google Scholar

show all references

References:
[1]

S. Allen and J. Cahn, A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening,, Acta Metall., 27 (1979), 1084.  doi: 10.1016/0001-6160(79)90196-2.  Google Scholar

[2]

L. Ambrosio, N. Fusco and D. Pallara, Functions of bounded variation and free discontinuity problems,, Oxford Mathematical Monographs, (2000).   Google Scholar

[3]

V. Barbu, Nonlinear differential equations of monotone types in Banach spaces,, Springer Monographs in Mathematics, (2010).   Google Scholar

[4]

L. Blank, H. Garcke L. Sarbu and V. Styles, Primal-dual active set methods for Allen-Cahn variational inequalities with nonlocal constraints, Numer., Methods Partial Differential Equations, 29 (2013), 999.   Google Scholar

[5]

V. Barbu and T. Precupanu, Convexity and optimization in Banach spaces, Fourth edition,, Springer Monographs in Mathematics, (2012).   Google Scholar

[6]

H. Brézis, Opérateurs Maximaux Monotones et Semi-Groupes de Contractions dans les Espaces de Hilbert,, North-Holland, (1973).   Google Scholar

[7]

H. Brézis, M. G. Crandall and A. Pazy, Perturbations of nonlinear maximal monotone sets in Banach space,, Comm. Pure Appl. Math., 23 (1970), 123.   Google Scholar

[8]

L. Bronsard and R.V. Kohn, Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics,, J. Differential Equations, 90 (1991), 211.   Google Scholar

[9]

X. Chen and C. M. Elliott, Asymptotics for a parabolic double obstacle problem,, Proc. Roy. Soc. London Ser. A, 444 (1994), 429.   Google Scholar

[10]

P. C. Fife, Dynamics of internal layers and diffusive interfaces,, CBMS-NSF Regional Conf. Ser. in Appl. Math., 53 (1988).   Google Scholar

[11]

T. Fukao and N. Kenmochi, Lagrange multipliers in variational inequalities for nonlinear operators of monotone type,, Adv. Math. Sci. Appl., 23 (2013), 545.   Google Scholar

[12]

A. Ito, Asymptotic stability of Allen-Cahn model for nonlinear Laplacian with constraints,, Adv. Math. Sci. Appl., 9 (1999), 137.   Google Scholar

[13]

A. Ito, N. Yamazaki and N. Kenmochi, Attractors of nonlinear evolution systems generated by time-dependent subdifferentials in Hilbert spaces,, Dynamical systems and differential equations, (1996), 327.   Google Scholar

[14]

K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications,, Advances in Design and Control, 15 (2008).   Google Scholar

[15]

N. Kenmochi and K. Shirakawa, Stability for a parabolic variational inequality associated with total variation functional,, Funkcial. Ekvac., 44 (2001), 119.   Google Scholar

[16]

T. Ohtsuka, K. Shirakawa and N. Yamazaki, Optimal control problem for Allen-Cahn type equation associated with total variation energy,, Discrete Contin. Dyn. Syst. Ser. S, 5 (2012), 159.   Google Scholar

[17]

M. Ôtani, Nonmonotone perturbations for nonlinear, parabolic equations associated with subdifferential operators,, Cauchy problems, 46 (1982), 268.   Google Scholar

[18]

K. Shirakawa and M. Kimura, Stability analysis for Allen-Cahn type equation associated with the total variation energy,, Nonlinear Anal., 60 (2005), 257.   Google Scholar

[19]

Y. Tonegawa, Integrality of varifolds in the singular limit of reaction-diffusion equations,, Hiroshima Math. J., 33 (2003), 323.   Google Scholar

[1]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[2]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Tomáš Roubíček. Cahn-Hilliard equation with capillarity in actual deforming configurations. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 41-55. doi: 10.3934/dcdss.2020303

[5]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[6]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[7]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[8]

Gloria Paoli, Gianpaolo Piscitelli, Rossanno Sannipoli. A stability result for the Steklov Laplacian Eigenvalue Problem with a spherical obstacle. Communications on Pure & Applied Analysis, 2021, 20 (1) : 145-158. doi: 10.3934/cpaa.2020261

[9]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[10]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[11]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[12]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[13]

Xuefeng Zhang, Yingbo Zhang. Fault-tolerant control against actuator failures for uncertain singular fractional order systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 1-12. doi: 10.3934/naco.2020011

[14]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, 2021, 20 (1) : 405-425. doi: 10.3934/cpaa.2020274

[15]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[16]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[17]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[18]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[19]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[20]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

 Impact Factor: 

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (0)

[Back to Top]