2015, 2015(special): 436-445. doi: 10.3934/proc.2015.0436

Existence of positive solutions of a superlinear boundary value problem with indefinite weight

1. 

SISSA - International School for Advanced Studies, via Bonomea 265, 34136 Trieste, Italy

Received  September 2014 Revised  September 2015 Published  November 2015

We deal with the existence of positive solutions for a two-point boundary value problem associated with the nonlinear second order equation $u''+a(x)g(u)=0$. The weight $a(x)$ is allowed to change sign. We assume that the function $g\colon\mathopen{[}0,+\infty\mathclose{[}\to\mathbb{R}$ is continuous, $g(0)=0$ and satisfies suitable growth conditions, including the superlinear case $g(s)=s^{p}$, with $p>1$. In particular we suppose that $g(s)/s$ is large near infinity, but we do not require that $g(s)$ is non-negative in a neighborhood of zero. Using a topological approach based on the Leray-Schauder degree we obtain a result of existence of at least a positive solution that improves previous existence theorems.
Citation: Guglielmo Feltrin. Existence of positive solutions of a superlinear boundary value problem with indefinite weight. Conference Publications, 2015, 2015 (special) : 436-445. doi: 10.3934/proc.2015.0436
References:
[1]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Differential Equations, 146 (1998), 336.

[2]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Topol. Methods Nonlinear Anal., 4 (1994), 59.

[3]

D. Bonheure, J. M. Gomes and P. Habets, Multiple positive solutions of superlinear elliptic problems with sign-changing weight,, J. Differential Equations, 214 (2005), 36.

[4]

D. G. de Figueiredo, Positive solutions of semilinear elliptic problems,, in Differential equations (São Paulo, (1981), 34.

[5]

L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations,, Proc. Amer. Math. Soc., 120 (1994), 743.

[6]

G. Feltrin and F. Zanolin, Multiple positive solutions for a superlinear problem: a topological approach,, J. Differential Equations, 259 (2015), 925.

[7]

M. Gaudenzi, P. Habets and F. Zanolin, Positive solutions of superlinear boundary value problems with singular indefinite weight,, Commun. Pure Appl. Anal., 2 (2003), 411.

[8]

K. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities,, J. Differential Equations, 148 (1998), 407.

[9]

R. Manásevich, F. I. Njoku and F. Zanolin, Positive solutions for the one-dimensional $p$-Laplacian,, Differential Integral Equations, 8 (1995), 213.

[10]

R. D. Nussbaum, Periodic solutions of some nonlinear, autonomous functional differential equations. II,, J. Differential Equations, 14 (1973), 360.

[11]

R. D. Nussbaum, Positive solutions of nonlinear elliptic boundary value problems,, J. Math. Anal. Appl., 51 (1975), 461.

[12]

A. Zettl, Sturm-Liouville theory,, Mathematical Surveys and Monographs, (2005).

show all references

References:
[1]

H. Amann and J. López-Gómez, A priori bounds and multiple solutions for superlinear indefinite elliptic problems,, J. Differential Equations, 146 (1998), 336.

[2]

H. Berestycki, I. Capuzzo-Dolcetta and L. Nirenberg, Superlinear indefinite elliptic problems and nonlinear Liouville theorems,, Topol. Methods Nonlinear Anal., 4 (1994), 59.

[3]

D. Bonheure, J. M. Gomes and P. Habets, Multiple positive solutions of superlinear elliptic problems with sign-changing weight,, J. Differential Equations, 214 (2005), 36.

[4]

D. G. de Figueiredo, Positive solutions of semilinear elliptic problems,, in Differential equations (São Paulo, (1981), 34.

[5]

L. H. Erbe and H. Wang, On the existence of positive solutions of ordinary differential equations,, Proc. Amer. Math. Soc., 120 (1994), 743.

[6]

G. Feltrin and F. Zanolin, Multiple positive solutions for a superlinear problem: a topological approach,, J. Differential Equations, 259 (2015), 925.

[7]

M. Gaudenzi, P. Habets and F. Zanolin, Positive solutions of superlinear boundary value problems with singular indefinite weight,, Commun. Pure Appl. Anal., 2 (2003), 411.

[8]

K. Lan and J. R. L. Webb, Positive solutions of semilinear differential equations with singularities,, J. Differential Equations, 148 (1998), 407.

[9]

R. Manásevich, F. I. Njoku and F. Zanolin, Positive solutions for the one-dimensional $p$-Laplacian,, Differential Integral Equations, 8 (1995), 213.

[10]

R. D. Nussbaum, Periodic solutions of some nonlinear, autonomous functional differential equations. II,, J. Differential Equations, 14 (1973), 360.

[11]

R. D. Nussbaum, Positive solutions of nonlinear elliptic boundary value problems,, J. Math. Anal. Appl., 51 (1975), 461.

[12]

A. Zettl, Sturm-Liouville theory,, Mathematical Surveys and Monographs, (2005).

[1]

M. Gaudenzi, P. Habets, F. Zanolin. Positive solutions of superlinear boundary value problems with singular indefinite weight. Communications on Pure & Applied Analysis, 2003, 2 (3) : 411-423. doi: 10.3934/cpaa.2003.2.411

[2]

Feliz Minhós, T. Gyulov, A. I. Santos. Existence and location result for a fourth order boundary value problem. Conference Publications, 2005, 2005 (Special) : 662-671. doi: 10.3934/proc.2005.2005.662

[3]

Piotr Kowalski. The existence of a solution for Dirichlet boundary value problem for a Duffing type differential inclusion. Discrete & Continuous Dynamical Systems - B, 2014, 19 (8) : 2569-2580. doi: 10.3934/dcdsb.2014.19.2569

[4]

Eric R. Kaufmann. Existence and nonexistence of positive solutions for a nonlinear fractional boundary value problem. Conference Publications, 2009, 2009 (Special) : 416-423. doi: 10.3934/proc.2009.2009.416

[5]

Shaoyong Lai, Yong Hong Wu, Xu Yang. The global solution of an initial boundary value problem for the damped Boussinesq equation. Communications on Pure & Applied Analysis, 2004, 3 (2) : 319-328. doi: 10.3934/cpaa.2004.3.319

[6]

Guglielmo Feltrin. Positive subharmonic solutions to superlinear ODEs with indefinite weight. Discrete & Continuous Dynamical Systems - S, 2018, 11 (2) : 257-277. doi: 10.3934/dcdss.2018014

[7]

Chan-Gyun Kim, Yong-Hoon Lee. A bifurcation result for two point boundary value problem with a strong singularity. Conference Publications, 2011, 2011 (Special) : 834-843. doi: 10.3934/proc.2011.2011.834

[8]

Patricio Cerda, Leonelo Iturriaga, Sebastián Lorca, Pedro Ubilla. Positive radial solutions of a nonlinear boundary value problem. Communications on Pure & Applied Analysis, 2018, 17 (5) : 1765-1783. doi: 10.3934/cpaa.2018084

[9]

Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615

[10]

Vladimir V. Varlamov. On the initial boundary value problem for the damped Boussinesq equation. Discrete & Continuous Dynamical Systems - A, 1998, 4 (3) : 431-444. doi: 10.3934/dcds.1998.4.431

[11]

Gen Nakamura, Michiyuki Watanabe. An inverse boundary value problem for a nonlinear wave equation. Inverse Problems & Imaging, 2008, 2 (1) : 121-131. doi: 10.3934/ipi.2008.2.121

[12]

John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundary-value problem. Conference Publications, 2009, 2009 (Special) : 276-285. doi: 10.3934/proc.2009.2009.276

[13]

John R. Graef, Bo Yang. Multiple positive solutions to a three point third order boundary value problem. Conference Publications, 2005, 2005 (Special) : 337-344. doi: 10.3934/proc.2005.2005.337

[14]

John R. Graef, Bo Yang. Positive solutions of a third order nonlocal boundary value problem. Discrete & Continuous Dynamical Systems - S, 2008, 1 (1) : 89-97. doi: 10.3934/dcdss.2008.1.89

[15]

John R. Graef, Johnny Henderson, Bo Yang. Positive solutions to a fourth order three point boundary value problem. Conference Publications, 2009, 2009 (Special) : 269-275. doi: 10.3934/proc.2009.2009.269

[16]

Zhiming Guo, Zhi-Chun Yang, Xingfu Zou. Existence and uniqueness of positive solution to a non-local differential equation with homogeneous Dirichlet boundary condition---A non-monotone case. Communications on Pure & Applied Analysis, 2012, 11 (5) : 1825-1838. doi: 10.3934/cpaa.2012.11.1825

[17]

Hongyu Ye. Positive high energy solution for Kirchhoff equation in $\mathbb{R}^{3}$ with superlinear nonlinearities via Nehari-Pohožaev manifold. Discrete & Continuous Dynamical Systems - A, 2015, 35 (8) : 3857-3877. doi: 10.3934/dcds.2015.35.3857

[18]

Francesca Marcellini. Existence of solutions to a boundary value problem for a phase transition traffic model. Networks & Heterogeneous Media, 2017, 12 (2) : 259-275. doi: 10.3934/nhm.2017011

[19]

John R. Graef, Lingju Kong, Min Wang. Existence of multiple solutions to a discrete fourth order periodic boundary value problem. Conference Publications, 2013, 2013 (special) : 291-299. doi: 10.3934/proc.2013.2013.291

[20]

Alain Hertzog, Antoine Mondoloni. Existence of a weak solution for a quasilinear wave equation with boundary condition. Communications on Pure & Applied Analysis, 2002, 1 (2) : 191-219. doi: 10.3934/cpaa.2002.1.191

 Impact Factor: 

Metrics

  • PDF downloads (31)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]