
Previous Article
Wellposedness for a class of nonlinear degenerate parabolic equations
 PROC Home
 This Issue

Next Article
Existence of positive solutions of a superlinear boundary value problem with indefinite weight
High order periodic impulsive problems
1.  College of the Bahamas, School of Mathematics, Physics and Technologies, Department of Mathematics, Oakes Field Campus, Nassau 
2.  School of Sciences and Technology. Department of Mathematics, University of Évora, Research Center in Mathematics and Applications of the University of Évora, (CIMAUE), Rua Romão Ramalho, 59, 7000671 Évora 
The high order impulsive problem considered is composed by the fully nonlinear equation \begin{equation*} u^{\left( n\right) }\left( x\right) =f\left( x,u\left( x\right) ,u^{\prime }\left( x\right) ,...,u^{\left( n1\right) }\left( x\right) \right) \end{equation*} for a. e. $x\in I:=\left[ 0,1\right] ~\backslash ~\left\{ x_{1},...,x_{m}\right\} $ where $f:\left[ 0,1\right] \times \mathbb{R} ^{n}\rightarrow \mathbb{R}$ is $L^{1}$Carathéodory function, along with the periodic boundary conditions \begin{equation*} u^{\left( i\right) }\left( 0\right) =u^{\left( i\right) }\left( 1\right) , i=0,...,n1, \end{equation*} and the impulsive conditions \begin{equation*} \begin{array}{c} u^{\left( i\right) }\left( x_{j}^{+}\right) =g_{j}^{i}\left( u\left( x_{j}\right) \right) , i=0,...,n1, \end{array} \end{equation*} where $g_{j}^{i},$ for $j=1,...,m,$are given real valued functions satisfying some adequate conditions, and $x_{j}\in \left( 0,1\right) ,$ such that $0 = x_0 < x_1 <...< x_m < x_{m+1}=1.$
The arguments applied make use of the lower and upper solution method combined with an iterative technique, which is not necessarily monotone, together with classical results such as Lebesgue Dominated Convergence Theorem, AscoliArzela Theorem and fixed point theory.
References:
show all references
References:
[1] 
John Baxley, Mary E. Cunningham, M. Kathryn McKinnon. Higher order boundary value problems with multiple solutions: examples and techniques. Conference Publications, 2005, 2005 (Special) : 8490. doi: 10.3934/proc.2005.2005.84 
[2] 
Feliz Minhós, Rui Carapinha. On higher order nonlinear impulsive boundary value problems. Conference Publications, 2015, 2015 (special) : 851860. doi: 10.3934/proc.2015.0851 
[3] 
Alberto Cabada, João Fialho, Feliz Minhós. Non ordered lower and upper solutions to fourth order problems with functional boundary conditions. Conference Publications, 2011, 2011 (Special) : 209218. doi: 10.3934/proc.2011.2011.209 
[4] 
Feliz Minhós, A. I. Santos. Higher order twopoint boundary value problems with asymmetric growth. Discrete and Continuous Dynamical Systems  S, 2008, 1 (1) : 127137. doi: 10.3934/dcdss.2008.1.127 
[5] 
Angelo Favini, Yakov Yakubov. Regular boundary value problems for ordinary differentialoperator equations of higher order in UMD Banach spaces. Discrete and Continuous Dynamical Systems  S, 2011, 4 (3) : 595614. doi: 10.3934/dcdss.2011.4.595 
[6] 
João Fialho, Feliz Minhós. The role of lower and upper solutions in the generalization of Lidstone problems. Conference Publications, 2013, 2013 (special) : 217226. doi: 10.3934/proc.2013.2013.217 
[7] 
Rubén Figueroa, Rodrigo López Pouso, Jorge Rodríguez–López. Existence and multiplicity results for secondorder discontinuous problems via nonordered lower and upper solutions. Discrete and Continuous Dynamical Systems  B, 2020, 25 (2) : 617633. doi: 10.3934/dcdsb.2019257 
[8] 
Inara Yermachenko, Felix Sadyrbaev. Types of solutions and multiplicity results for second order nonlinear boundary value problems. Conference Publications, 2007, 2007 (Special) : 10611069. doi: 10.3934/proc.2007.2007.1061 
[9] 
Alberto Boscaggin, Fabio Zanolin. Subharmonic solutions for nonlinear second order equations in presence of lower and upper solutions. Discrete and Continuous Dynamical Systems, 2013, 33 (1) : 89110. doi: 10.3934/dcds.2013.33.89 
[10] 
Ana Maria Bertone, J.V. Goncalves. Discontinuous elliptic problems in $R^N$: Lower and upper solutions and variational principles. Discrete and Continuous Dynamical Systems, 2000, 6 (2) : 315328. doi: 10.3934/dcds.2000.6.315 
[11] 
Olga A. Brezhneva, Alexey A. Tret’yakov, Jerrold E. Marsden. Higherorder implicit function theorems and degenerate nonlinear boundaryvalue problems. Communications on Pure and Applied Analysis, 2008, 7 (2) : 293315. doi: 10.3934/cpaa.2008.7.293 
[12] 
Chunyan Ji, Yang Xue, Yong Li. Periodic solutions for SDEs through upper and lower solutions. Discrete and Continuous Dynamical Systems  B, 2020, 25 (12) : 47374754. doi: 10.3934/dcdsb.2020122 
[13] 
Massimo Tarallo, Zhe Zhou. Limit periodic upper and lower solutions in a generic sense. Discrete and Continuous Dynamical Systems, 2018, 38 (1) : 293309. doi: 10.3934/dcds.2018014 
[14] 
John R. Graef, Lingju Kong, Bo Yang. Positive solutions of a nonlinear higher order boundaryvalue problem. Conference Publications, 2009, 2009 (Special) : 276285. doi: 10.3934/proc.2009.2009.276 
[15] 
G. Infante. Positive solutions of nonlocal boundary value problems with singularities. Conference Publications, 2009, 2009 (Special) : 377384. doi: 10.3934/proc.2009.2009.377 
[16] 
John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283290. doi: 10.3934/proc.2013.2013.283 
[17] 
John V. Baxley, Philip T. Carroll. Nonlinear boundary value problems with multiple positive solutions. Conference Publications, 2003, 2003 (Special) : 8390. doi: 10.3934/proc.2003.2003.83 
[18] 
Johnny Henderson, Rodica Luca. Existence of positive solutions for a system of nonlinear secondorder integral boundary value problems. Conference Publications, 2015, 2015 (special) : 596604. doi: 10.3934/proc.2015.0596 
[19] 
John R. Graef, Lingju Kong. Uniqueness and parameter dependence of positive solutions of third order boundary value problems with $p$laplacian. Conference Publications, 2011, 2011 (Special) : 515522. doi: 10.3934/proc.2011.2011.515 
[20] 
J. R. L. Webb, Gennaro Infante. Semipositone nonlocal boundary value problems of arbitrary order. Communications on Pure and Applied Analysis, 2010, 9 (2) : 563581. doi: 10.3934/cpaa.2010.9.563 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]