2015, 2015(special): 464-472. doi: 10.3934/proc.2015.0464

Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601, Japan, Japan

Received  July 2014 Revised  November 2014 Published  November 2015

This paper is concerned with global existence and boundedness of classical solutions to the quasilinear fully parabolic Keller-Segel system $u_t = \nabla \cdot(D(u)\nabla u) -\nabla \cdot (v^{-1}S(u)\nabla v)$, $v_t= \Delta v-v+u$. In [7,4], global existence and boundedness were established in the system without $v^{-1}$. In this paper the signal-dependent sensitivity $v^{-1}$ is taken into account via the Weber-Fechner law. A uniform-in-time estimate for $v$ obtained in [2] defeats the singularity of $v^{-1}$.
Citation: Kentarou Fujie, Chihiro Nishiyama, Tomomi Yokota. Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with the sensitivity $v^{-1}S(u)$. Conference Publications, 2015, 2015 (special) : 464-472. doi: 10.3934/proc.2015.0464
References:
[1]

T. Ciéslak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832.   Google Scholar

[2]

K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity,, J. Math. Anal. Appl., 424 (2015), 675.   Google Scholar

[3]

T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.   Google Scholar

[4]

S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993.   Google Scholar

[5]

E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability ,, J. Theor. Biol., 26 (1970), 399.   Google Scholar

[6]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type,, Amer. Math. Soc. Transl., (1968).   Google Scholar

[7]

Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.   Google Scholar

[8]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?,, Math. Methods Appl. Sci., 33 (2010), 12.   Google Scholar

[9]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity,, Math. Methods Appl. Sci., 34 (2011), 176.   Google Scholar

[10]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748.   Google Scholar

show all references

References:
[1]

T. Ciéslak, C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832.   Google Scholar

[2]

K. Fujie, Boundedness in a fully parabolic chemotaxis system with singular sensitivity,, J. Math. Anal. Appl., 424 (2015), 675.   Google Scholar

[3]

T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.   Google Scholar

[4]

S. Ishida, K. Seki and T. Yokota, Boundedness in quasilinear Keller-Segel systems of parabolic-parabolic type on non-convex bounded domains,, J. Differential Equations, 256 (2014), 2993.   Google Scholar

[5]

E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability ,, J. Theor. Biol., 26 (1970), 399.   Google Scholar

[6]

O. A. Ladyzenskaja, V. A. Solonnikov and N. N. Ural'ceva, Linear and Quasi-Linear Equations of Parabolic Type,, Amer. Math. Soc. Transl., (1968).   Google Scholar

[7]

Y. Tao, M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.   Google Scholar

[8]

M. Winkler, Does a 'volume-filling effect' always prevent chemotactic collapse?,, Math. Methods Appl. Sci., 33 (2010), 12.   Google Scholar

[9]

M. Winkler, Global solutions in a fully parabolic chemotaxis system with singular sensitivity,, Math. Methods Appl. Sci., 34 (2011), 176.   Google Scholar

[10]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748.   Google Scholar

[1]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[2]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[3]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[4]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[5]

Shiqiu Fu, Kanishka Perera. On a class of semipositone problems with singular Trudinger-Moser nonlinearities. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020452

[6]

Anna Canale, Francesco Pappalardo, Ciro Tarantino. Weighted multipolar Hardy inequalities and evolution problems with Kolmogorov operators perturbed by singular potentials. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020274

[7]

Susmita Sadhu. Complex oscillatory patterns near singular Hopf bifurcation in a two-timescale ecosystem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020342

[8]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[9]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[10]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[11]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[12]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[13]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[14]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[15]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[16]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[17]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[18]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

 Impact Factor: 

Metrics

  • PDF downloads (97)
  • HTML views (0)
  • Cited by (0)

[Back to Top]