2015, 2015(special): 473-478. doi: 10.3934/proc.2015.0473

Remark on a semirelativistic equation in the energy space

1. 

Department of Pure and Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555

2. 

Faculty of Science, Saitama University, 255 Shimo-Okubo, Saitama 338-8570

3. 

Department of Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Received  September 2014 Revised  February 2015 Published  November 2015

Well-posedness of the Cauchy problem for a semirelativistic equation with cubic nonlinearity is shown in the energy space $H^{1/2}$. Solutions are constructed as a limit of approximation solutions, where the argument on the convergence depends on the completeness of $L^2$ and is independent of compactness. The Yudovitch type argument plays an important role for the convergence arguments.
Citation: Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. Remark on a semirelativistic equation in the energy space. Conference Publications, 2015, 2015 (special) : 473-478. doi: 10.3934/proc.2015.0473
References:
[1]

J. P. Borgna and D. F. Rial, Existence of ground states for a one-dimensional relativistic Schrödinger equation,, J. Math. Phys., 53 (2012).   Google Scholar

[2]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation,, SIAM J. Math. Anal., 38 (2006), 1060.   Google Scholar

[3]

J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars,, Comm. Pure Appl. Math., 60 (2007), 1691.   Google Scholar

[4]

K. Fujiwara, S. Machihara and T. Ozawa, On a system of semirelativistic equations in the energy space,, Commun. Pure Appl. Anal., 14 (2015), 1343.   Google Scholar

[5]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case,, J. Funct. Anal., 32 (1979), 1.   Google Scholar

[6]

V. I. Judovič, Non-stationary flows of an ideal incompressible fluid,, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032.   Google Scholar

[7]

J. Krieger, E. Lenzmann and P. Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation,, Arch. Ration. Mech. Anal., 209 (2013), 61.   Google Scholar

[8]

E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type,, Math. Phys. Anal. Geom., 10 (2007), 43.   Google Scholar

[9]

L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations,, SIAM J. Math. Anal., 33 (2001), 982.   Google Scholar

[10]

M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces,, Publ. Res. Inst. Math. Sci., 37 (2001), 255.   Google Scholar

[11]

T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations,, Nonlinear Anal., 14 (1990), 765.   Google Scholar

[12]

T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem,, J. Math. Anal. Appl., 155 (1991), 531.   Google Scholar

[13]

T. Ozawa and N. Visciglia, An improvement on the brezis-gallout technique for 2d nls and 1d half-wave equation,, , ().   Google Scholar

[14]

I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129.   Google Scholar

[15]

M. V. Vladimirov, On the solvability of a mixed problem for a nonlinear equation of Schrödinger type,, Dokl. Akad. Nauk SSSR, 275 (1984), 780.   Google Scholar

show all references

References:
[1]

J. P. Borgna and D. F. Rial, Existence of ground states for a one-dimensional relativistic Schrödinger equation,, J. Math. Phys., 53 (2012).   Google Scholar

[2]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation,, SIAM J. Math. Anal., 38 (2006), 1060.   Google Scholar

[3]

J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars,, Comm. Pure Appl. Math., 60 (2007), 1691.   Google Scholar

[4]

K. Fujiwara, S. Machihara and T. Ozawa, On a system of semirelativistic equations in the energy space,, Commun. Pure Appl. Anal., 14 (2015), 1343.   Google Scholar

[5]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case,, J. Funct. Anal., 32 (1979), 1.   Google Scholar

[6]

V. I. Judovič, Non-stationary flows of an ideal incompressible fluid,, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032.   Google Scholar

[7]

J. Krieger, E. Lenzmann and P. Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation,, Arch. Ration. Mech. Anal., 209 (2013), 61.   Google Scholar

[8]

E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type,, Math. Phys. Anal. Geom., 10 (2007), 43.   Google Scholar

[9]

L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations,, SIAM J. Math. Anal., 33 (2001), 982.   Google Scholar

[10]

M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces,, Publ. Res. Inst. Math. Sci., 37 (2001), 255.   Google Scholar

[11]

T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations,, Nonlinear Anal., 14 (1990), 765.   Google Scholar

[12]

T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem,, J. Math. Anal. Appl., 155 (1991), 531.   Google Scholar

[13]

T. Ozawa and N. Visciglia, An improvement on the brezis-gallout technique for 2d nls and 1d half-wave equation,, , ().   Google Scholar

[14]

I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129.   Google Scholar

[15]

M. V. Vladimirov, On the solvability of a mixed problem for a nonlinear equation of Schrödinger type,, Dokl. Akad. Nauk SSSR, 275 (1984), 780.   Google Scholar

[1]

Noufel Frikha, Valentin Konakov, Stéphane Menozzi. Well-posedness of some non-linear stable driven SDEs. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 849-898. doi: 10.3934/dcds.2020302

[2]

Boris Andreianov, Mohamed Maliki. On classes of well-posedness for quasilinear diffusion equations in the whole space. Discrete & Continuous Dynamical Systems - S, 2021, 14 (2) : 505-531. doi: 10.3934/dcdss.2020361

[3]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[4]

Antoine Benoit. Weak well-posedness of hyperbolic boundary value problems in a strip: when instabilities do not reflect the geometry. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5475-5486. doi: 10.3934/cpaa.2020248

[5]

Tong Tang, Jianzhu Sun. Local well-posedness for the density-dependent incompressible magneto-micropolar system with vacuum. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020377

[6]

Xiaopeng Zhao, Yong Zhou. Well-posedness and decay of solutions to 3D generalized Navier-Stokes equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (2) : 795-813. doi: 10.3934/dcdsb.2020142

[7]

Dongfen Bian, Yao Xiao. Global well-posedness of non-isothermal inhomogeneous nematic liquid crystal flows. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1243-1272. doi: 10.3934/dcdsb.2020161

[8]

Xinyu Mei, Yangmin Xiong, Chunyou Sun. Pullback attractor for a weakly damped wave equation with sup-cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 569-600. doi: 10.3934/dcds.2020270

[9]

Jean-Claude Saut, Yuexun Wang. Long time behavior of the fractional Korteweg-de Vries equation with cubic nonlinearity. Discrete & Continuous Dynamical Systems - A, 2021, 41 (3) : 1133-1155. doi: 10.3934/dcds.2020312

[10]

Maho Endo, Yuki Kaneko, Yoshio Yamada. Free boundary problem for a reaction-diffusion equation with positive bistable nonlinearity. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3375-3394. doi: 10.3934/dcds.2020033

[11]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[12]

Van Duong Dinh. Random data theory for the cubic fourth-order nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020284

[13]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[14]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[15]

Justin Holmer, Chang Liu. Blow-up for the 1D nonlinear Schrödinger equation with point nonlinearity II: Supercritical blow-up profiles. Communications on Pure & Applied Analysis, 2021, 20 (1) : 215-242. doi: 10.3934/cpaa.2020264

[16]

Marco Ghimenti, Anna Maria Micheletti. Compactness results for linearly perturbed Yamabe problem on manifolds with boundary. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020453

[17]

Peizhao Yu, Guoshan Zhang, Yi Zhang. Decoupling of cubic polynomial matrix systems. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 13-26. doi: 10.3934/naco.2020012

[18]

Meilan Cai, Maoan Han. Limit cycle bifurcations in a class of piecewise smooth cubic systems with multiple parameters. Communications on Pure & Applied Analysis, 2021, 20 (1) : 55-75. doi: 10.3934/cpaa.2020257

[19]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[20]

H. M. Srivastava, H. I. Abdel-Gawad, Khaled Mohammed Saad. Oscillatory states and patterns formation in a two-cell cubic autocatalytic reaction-diffusion model subjected to the Dirichlet conditions. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020433

 Impact Factor: 

Metrics

  • PDF downloads (44)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]