2015, 2015(special): 473-478. doi: 10.3934/proc.2015.0473

Remark on a semirelativistic equation in the energy space

1. 

Department of Pure and Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555

2. 

Faculty of Science, Saitama University, 255 Shimo-Okubo, Saitama 338-8570

3. 

Department of Applied Physics, Waseda University, 3-4-1, Okubo, Shinjuku-ku, Tokyo 169-8555, Japan

Received  September 2014 Revised  February 2015 Published  November 2015

Well-posedness of the Cauchy problem for a semirelativistic equation with cubic nonlinearity is shown in the energy space $H^{1/2}$. Solutions are constructed as a limit of approximation solutions, where the argument on the convergence depends on the completeness of $L^2$ and is independent of compactness. The Yudovitch type argument plays an important role for the convergence arguments.
Citation: Kazumasa Fujiwara, Shuji Machihara, Tohru Ozawa. Remark on a semirelativistic equation in the energy space. Conference Publications, 2015, 2015 (special) : 473-478. doi: 10.3934/proc.2015.0473
References:
[1]

J. P. Borgna and D. F. Rial, Existence of ground states for a one-dimensional relativistic Schrödinger equation,, J. Math. Phys., 53 (2012).   Google Scholar

[2]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation,, SIAM J. Math. Anal., 38 (2006), 1060.   Google Scholar

[3]

J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars,, Comm. Pure Appl. Math., 60 (2007), 1691.   Google Scholar

[4]

K. Fujiwara, S. Machihara and T. Ozawa, On a system of semirelativistic equations in the energy space,, Commun. Pure Appl. Anal., 14 (2015), 1343.   Google Scholar

[5]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case,, J. Funct. Anal., 32 (1979), 1.   Google Scholar

[6]

V. I. Judovič, Non-stationary flows of an ideal incompressible fluid,, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032.   Google Scholar

[7]

J. Krieger, E. Lenzmann and P. Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation,, Arch. Ration. Mech. Anal., 209 (2013), 61.   Google Scholar

[8]

E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type,, Math. Phys. Anal. Geom., 10 (2007), 43.   Google Scholar

[9]

L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations,, SIAM J. Math. Anal., 33 (2001), 982.   Google Scholar

[10]

M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces,, Publ. Res. Inst. Math. Sci., 37 (2001), 255.   Google Scholar

[11]

T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations,, Nonlinear Anal., 14 (1990), 765.   Google Scholar

[12]

T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem,, J. Math. Anal. Appl., 155 (1991), 531.   Google Scholar

[13]

T. Ozawa and N. Visciglia, An improvement on the brezis-gallout technique for 2d nls and 1d half-wave equation,, , ().   Google Scholar

[14]

I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129.   Google Scholar

[15]

M. V. Vladimirov, On the solvability of a mixed problem for a nonlinear equation of Schrödinger type,, Dokl. Akad. Nauk SSSR, 275 (1984), 780.   Google Scholar

show all references

References:
[1]

J. P. Borgna and D. F. Rial, Existence of ground states for a one-dimensional relativistic Schrödinger equation,, J. Math. Phys., 53 (2012).   Google Scholar

[2]

Y. Cho and T. Ozawa, On the semirelativistic Hartree-type equation,, SIAM J. Math. Anal., 38 (2006), 1060.   Google Scholar

[3]

J. Fröhlich and E. Lenzmann, Blowup for nonlinear wave equations describing boson stars,, Comm. Pure Appl. Math., 60 (2007), 1691.   Google Scholar

[4]

K. Fujiwara, S. Machihara and T. Ozawa, On a system of semirelativistic equations in the energy space,, Commun. Pure Appl. Anal., 14 (2015), 1343.   Google Scholar

[5]

J. Ginibre and G. Velo, On a class of nonlinear Schrödinger equations. I. The Cauchy problem, general case,, J. Funct. Anal., 32 (1979), 1.   Google Scholar

[6]

V. I. Judovič, Non-stationary flows of an ideal incompressible fluid,, Ž. Vyčisl. Mat. i Mat. Fiz., 3 (1963), 1032.   Google Scholar

[7]

J. Krieger, E. Lenzmann and P. Raphaël, Nondispersive solutions to the $L^2$-critical half-wave equation,, Arch. Ration. Mech. Anal., 209 (2013), 61.   Google Scholar

[8]

E. Lenzmann, Well-posedness for semi-relativistic Hartree equations of critical type,, Math. Phys. Anal. Geom., 10 (2007), 43.   Google Scholar

[9]

L. Molinet, J. C. Saut and N. Tzvetkov, Ill-posedness issues for the Benjamin-Ono and related equations,, SIAM J. Math. Anal., 33 (2001), 982.   Google Scholar

[10]

M. Nakamura and T. Ozawa, The Cauchy problem for nonlinear Klein-Gordon equations in the Sobolev spaces,, Publ. Res. Inst. Math. Sci., 37 (2001), 255.   Google Scholar

[11]

T. Ogawa, A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations,, Nonlinear Anal., 14 (1990), 765.   Google Scholar

[12]

T. Ogawa and T. Ozawa, Trudinger type inequalities and uniqueness of weak solutions for the nonlinear Schrödinger mixed problem,, J. Math. Anal. Appl., 155 (1991), 531.   Google Scholar

[13]

T. Ozawa and N. Visciglia, An improvement on the brezis-gallout technique for 2d nls and 1d half-wave equation,, , ().   Google Scholar

[14]

I. E. Segal, The global Cauchy problem for a relativistic scalar field with power interaction,, Bull. Soc. Math. France, 91 (1963), 129.   Google Scholar

[15]

M. V. Vladimirov, On the solvability of a mixed problem for a nonlinear equation of Schrödinger type,, Dokl. Akad. Nauk SSSR, 275 (1984), 780.   Google Scholar

[1]

Irena Lasiecka, Roberto Triggiani. Global exact controllability of semilinear wave equations by a double compactness/uniqueness argument. Conference Publications, 2005, 2005 (Special) : 556-565. doi: 10.3934/proc.2005.2005.556

[2]

Yves Coudène. The Hopf argument. Journal of Modern Dynamics, 2007, 1 (1) : 147-153. doi: 10.3934/jmd.2007.1.147

[3]

Nobu Kishimoto. Local well-posedness for the Cauchy problem of the quadratic Schrödinger equation with nonlinearity $\bar u^2$. Communications on Pure & Applied Analysis, 2008, 7 (5) : 1123-1143. doi: 10.3934/cpaa.2008.7.1123

[4]

Benjamin Dodson. Global well-posedness and scattering for the defocusing, cubic nonlinear Schrödinger equation when $n = 3$ via a linear-nonlinear decomposition. Discrete & Continuous Dynamical Systems - A, 2013, 33 (5) : 1905-1926. doi: 10.3934/dcds.2013.33.1905

[5]

Tristan Roy. Adapted linear-nonlinear decomposition and global well-posedness for solutions to the defocusing cubic wave equation on $\mathbb{R}^{3}$. Discrete & Continuous Dynamical Systems - A, 2009, 24 (4) : 1307-1323. doi: 10.3934/dcds.2009.24.1307

[6]

Jianqing Chen. A variational argument to finding global solutions of a quasilinear Schrödinger equation. Communications on Pure & Applied Analysis, 2008, 7 (1) : 83-88. doi: 10.3934/cpaa.2008.7.83

[7]

Boris Kolev. Local well-posedness of the EPDiff equation: A survey. Journal of Geometric Mechanics, 2017, 9 (2) : 167-189. doi: 10.3934/jgm.2017007

[8]

Jerry Bona, Nikolay Tzvetkov. Sharp well-posedness results for the BBM equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (4) : 1241-1252. doi: 10.3934/dcds.2009.23.1241

[9]

Nils Strunk. Well-posedness for the supercritical gKdV equation. Communications on Pure & Applied Analysis, 2014, 13 (2) : 527-542. doi: 10.3934/cpaa.2014.13.527

[10]

A. Alexandrou Himonas, Curtis Holliman. On well-posedness of the Degasperis-Procesi equation. Discrete & Continuous Dynamical Systems - A, 2011, 31 (2) : 469-488. doi: 10.3934/dcds.2011.31.469

[11]

Yonggeun Cho, Gyeongha Hwang, Soonsik Kwon, Sanghyuk Lee. Well-posedness and ill-posedness for the cubic fractional Schrödinger equations. Discrete & Continuous Dynamical Systems - A, 2015, 35 (7) : 2863-2880. doi: 10.3934/dcds.2015.35.2863

[12]

Barbara Kaltenbacher, Irena Lasiecka. Well-posedness of the Westervelt and the Kuznetsov equation with nonhomogeneous Neumann boundary conditions. Conference Publications, 2011, 2011 (Special) : 763-773. doi: 10.3934/proc.2011.2011.763

[13]

Takamori Kato. Global well-posedness for the Kawahara equation with low regularity. Communications on Pure & Applied Analysis, 2013, 12 (3) : 1321-1339. doi: 10.3934/cpaa.2013.12.1321

[14]

Ricardo A. Pastrán, Oscar G. Riaño. Sharp well-posedness for the Chen-Lee equation. Communications on Pure & Applied Analysis, 2016, 15 (6) : 2179-2202. doi: 10.3934/cpaa.2016033

[15]

Hartmut Pecher. Local well-posedness for the nonlinear Dirac equation in two space dimensions. Communications on Pure & Applied Analysis, 2014, 13 (2) : 673-685. doi: 10.3934/cpaa.2014.13.673

[16]

Zhaohui Huo, Boling Guo. The well-posedness of Cauchy problem for the generalized nonlinear dispersive equation. Discrete & Continuous Dynamical Systems - A, 2005, 12 (3) : 387-402. doi: 10.3934/dcds.2005.12.387

[17]

Zhaoyang Yin. Well-posedness, blowup, and global existence for an integrable shallow water equation. Discrete & Continuous Dynamical Systems - A, 2004, 11 (2&3) : 393-411. doi: 10.3934/dcds.2004.11.393

[18]

Jae Min Lee, Stephen C. Preston. Local well-posedness of the Camassa-Holm equation on the real line. Discrete & Continuous Dynamical Systems - A, 2017, 37 (6) : 3285-3299. doi: 10.3934/dcds.2017139

[19]

Hideo Takaoka. Global well-posedness for the Kadomtsev-Petviashvili II equation. Discrete & Continuous Dynamical Systems - A, 2000, 6 (2) : 483-499. doi: 10.3934/dcds.2000.6.483

[20]

Jerry L. Bona, Hongqiu Chen, Chun-Hsiung Hsia. Well-posedness for the BBM-equation in a quarter plane. Discrete & Continuous Dynamical Systems - S, 2014, 7 (6) : 1149-1163. doi: 10.3934/dcdss.2014.7.1149

 Impact Factor: 

Metrics

  • PDF downloads (24)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]