
Previous Article
Blowup for nonlinear inequalities with gradient terms and singularities on unbounded sets
 PROC Home
 This Issue

Next Article
Remark on a semirelativistic equation in the energy space
Estimates for solutions of nonautonomous semilinear illposed problems
1.  Division of Science and Engineering, Penn State Abington, 1600 Woodland Road, Abington, PA 19001 
References:
[1] 
K. A. Ames and R. J. Hughes, Structural stability for illposed problems in Banach space,, Semigroup Forum, 70 (2005), 127. Google Scholar 
[2] 
N. Boussetila and F. Rebbani, A modified quasireversibility method for a class of illposed Cauchy problems,, Georgian Math J., 14 (2007), 627. Google Scholar 
[3] 
B. Campbell Hetrick and R. J. Hughes, Continuous dependence on modeling for nonlinear illposed problems,, J. Math. Anal. Appl., 349 (2009), 420. Google Scholar 
[4] 
G. W. Clark and S. F. Oppenheimer, Quasireversibility methods for nonwellposed problems,, Electron. J. Diff. Eqns., 1994 (1994), 1. Google Scholar 
[5] 
N. Dunford and J. Schwartz, Linear Operators, Part II,, John Wiley and Sons, (1957). Google Scholar 
[6] 
M. A. Fury, Regularization for illposed inhomogeneous evolution problems in a Hilbert space,, Discrete and Continuous Dynamical Systems, 2013 (2013), 259. Google Scholar 
[7] 
M. A. Fury, Modified quasireversibility method for nonautonomous semilinear problems,, Electron. J. Diff. Eqns., Conf. 20 (2013), 65. Google Scholar 
[8] 
M. Fury and R. J. Hughes, Continuous dependence of solutions for illposed evolution problems,, Electron. J. Diff. Eqns., Conf. 19 (2010), 99. Google Scholar 
[9] 
Y. Huang, Modified quasireversibility method for final value problems in Banach spaces,, J. Math. Anal. Appl. 340 (2008) 757769., 340 (2008), 757. Google Scholar 
[10] 
Y. Huang and Q. Zheng, Regularization for a class of illposed Cauchy problems,, Proc. Amer. Math. Soc., 13310 (2005), 133. Google Scholar 
[11] 
R. Lattes and J. L. Lions, The Method of Quasireversibility, Applications to Partial Differential Equations,, Amer. Elsevier, (1969). Google Scholar 
[12] 
N. T. Long and A. P. N. Dinh, Approximation of a parabolic nonlinear evolution equation backwards in time,, Inverse Problems, 10 (1994), 905. Google Scholar 
[13] 
I. V. Mel'nikova, General theory of the illposed Cauchy problem,, J. Inverse and Illposed Problems, 3 (1995), 149. Google Scholar 
[14] 
K. Miller, Stabilized quasireversibility and other nearlybestpossible methods for nonwellposed problems,, in Symposium on NonWellPosed Problems and Logarithmic Convexity (HeriotWatt Univ., (1972), 161. Google Scholar 
[15] 
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, SpringerVerlag, (1983). Google Scholar 
[16] 
R. E. Showalter, The final value problem for evolution equations,, J. Math. Anal. Appl., 47 (1974), 563. Google Scholar 
[17] 
D. D. Trong and N. H. Tuan, Regularization and error estimates for nonhomogeneous backward heat problems,, Electron. J. Diff. Eqns., 2006 (2006), 1. Google Scholar 
[18] 
D. D. Trong and N. H. Tuan, Stabilized quasireversibility method for a class of nonlinear illposed problems,, Electron. J. Diff. Eqns., 2008 (2008), 1. Google Scholar 
[19] 
N. H. Tuan and D. D. Trong, On a backward parabolic problem with local Lipschitz source,, J. Math. Anal. Appl. 414 (2014), 414 (2014), 678. Google Scholar 
show all references
References:
[1] 
K. A. Ames and R. J. Hughes, Structural stability for illposed problems in Banach space,, Semigroup Forum, 70 (2005), 127. Google Scholar 
[2] 
N. Boussetila and F. Rebbani, A modified quasireversibility method for a class of illposed Cauchy problems,, Georgian Math J., 14 (2007), 627. Google Scholar 
[3] 
B. Campbell Hetrick and R. J. Hughes, Continuous dependence on modeling for nonlinear illposed problems,, J. Math. Anal. Appl., 349 (2009), 420. Google Scholar 
[4] 
G. W. Clark and S. F. Oppenheimer, Quasireversibility methods for nonwellposed problems,, Electron. J. Diff. Eqns., 1994 (1994), 1. Google Scholar 
[5] 
N. Dunford and J. Schwartz, Linear Operators, Part II,, John Wiley and Sons, (1957). Google Scholar 
[6] 
M. A. Fury, Regularization for illposed inhomogeneous evolution problems in a Hilbert space,, Discrete and Continuous Dynamical Systems, 2013 (2013), 259. Google Scholar 
[7] 
M. A. Fury, Modified quasireversibility method for nonautonomous semilinear problems,, Electron. J. Diff. Eqns., Conf. 20 (2013), 65. Google Scholar 
[8] 
M. Fury and R. J. Hughes, Continuous dependence of solutions for illposed evolution problems,, Electron. J. Diff. Eqns., Conf. 19 (2010), 99. Google Scholar 
[9] 
Y. Huang, Modified quasireversibility method for final value problems in Banach spaces,, J. Math. Anal. Appl. 340 (2008) 757769., 340 (2008), 757. Google Scholar 
[10] 
Y. Huang and Q. Zheng, Regularization for a class of illposed Cauchy problems,, Proc. Amer. Math. Soc., 13310 (2005), 133. Google Scholar 
[11] 
R. Lattes and J. L. Lions, The Method of Quasireversibility, Applications to Partial Differential Equations,, Amer. Elsevier, (1969). Google Scholar 
[12] 
N. T. Long and A. P. N. Dinh, Approximation of a parabolic nonlinear evolution equation backwards in time,, Inverse Problems, 10 (1994), 905. Google Scholar 
[13] 
I. V. Mel'nikova, General theory of the illposed Cauchy problem,, J. Inverse and Illposed Problems, 3 (1995), 149. Google Scholar 
[14] 
K. Miller, Stabilized quasireversibility and other nearlybestpossible methods for nonwellposed problems,, in Symposium on NonWellPosed Problems and Logarithmic Convexity (HeriotWatt Univ., (1972), 161. Google Scholar 
[15] 
A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,, SpringerVerlag, (1983). Google Scholar 
[16] 
R. E. Showalter, The final value problem for evolution equations,, J. Math. Anal. Appl., 47 (1974), 563. Google Scholar 
[17] 
D. D. Trong and N. H. Tuan, Regularization and error estimates for nonhomogeneous backward heat problems,, Electron. J. Diff. Eqns., 2006 (2006), 1. Google Scholar 
[18] 
D. D. Trong and N. H. Tuan, Stabilized quasireversibility method for a class of nonlinear illposed problems,, Electron. J. Diff. Eqns., 2008 (2008), 1. Google Scholar 
[19] 
N. H. Tuan and D. D. Trong, On a backward parabolic problem with local Lipschitz source,, J. Math. Anal. Appl. 414 (2014), 414 (2014), 678. Google Scholar 
[1] 
Matthew A. Fury. Regularization for illposed inhomogeneous evolution problems in a Hilbert space. Conference Publications, 2013, 2013 (special) : 259272. doi: 10.3934/proc.2013.2013.259 
[2] 
Eliane Bécache, Laurent Bourgeois, Lucas Franceschini, Jérémi Dardé. Application of mixed formulations of quasireversibility to solve illposed problems for heat and wave equations: The 1D case. Inverse Problems & Imaging, 2015, 9 (4) : 9711002. doi: 10.3934/ipi.2015.9.971 
[3] 
Stefan Kindermann. Convergence of the gradient method for illposed problems. Inverse Problems & Imaging, 2017, 11 (4) : 703720. doi: 10.3934/ipi.2017033 
[4] 
Sergiy Zhuk. Inverse problems for linear illposed differentialalgebraic equations with uncertain parameters. Conference Publications, 2011, 2011 (Special) : 14671476. doi: 10.3934/proc.2011.2011.1467 
[5] 
Paola Favati, Grazia Lotti, Ornella Menchi, Francesco Romani. An innerouter regularizing method for illposed problems. Inverse Problems & Imaging, 2014, 8 (2) : 409420. doi: 10.3934/ipi.2014.8.409 
[6] 
Markus Haltmeier, Richard Kowar, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear illposed equations II: Applications. Inverse Problems & Imaging, 2007, 1 (3) : 507523. doi: 10.3934/ipi.2007.1.507 
[7] 
Misha Perepelitsa. An illposed problem for the NavierStokes equations for compressible flows. Discrete & Continuous Dynamical Systems  A, 2010, 26 (2) : 609623. doi: 10.3934/dcds.2010.26.609 
[8] 
Felix Lucka, Katharina Proksch, Christoph Brune, Nicolai Bissantz, Martin Burger, Holger Dette, Frank Wübbeling. Risk estimators for choosing regularization parameters in illposed problems  properties and limitations. Inverse Problems & Imaging, 2018, 12 (5) : 11211155. doi: 10.3934/ipi.2018047 
[9] 
Olha P. Kupenko, Rosanna Manzo. On optimal controls in coefficients for illposed nonLinear elliptic Dirichlet boundary value problems. Discrete & Continuous Dynamical Systems  B, 2018, 23 (4) : 13631393. doi: 10.3934/dcdsb.2018155 
[10] 
Guozhi Dong, Bert Jüttler, Otmar Scherzer, Thomas Takacs. Convergence of Tikhonov regularization for solving illposed operator equations with solutions defined on surfaces. Inverse Problems & Imaging, 2017, 11 (2) : 221246. doi: 10.3934/ipi.2017011 
[11] 
Johann Baumeister, Barbara Kaltenbacher, Antonio Leitão. On LevenbergMarquardtKaczmarz iterative methods for solving systems of nonlinear illposed equations. Inverse Problems & Imaging, 2010, 4 (3) : 335350. doi: 10.3934/ipi.2010.4.335 
[12] 
Markus Haltmeier, Antonio Leitão, Otmar Scherzer. Kaczmarz methods for regularizing nonlinear illposed equations I: convergence analysis. Inverse Problems & Imaging, 2007, 1 (2) : 289298. doi: 10.3934/ipi.2007.1.289 
[13] 
Adriano De Cezaro, Johann Baumeister, Antonio Leitão. Modified iterated Tikhonov methods for solving systems of nonlinear illposed equations. Inverse Problems & Imaging, 2011, 5 (1) : 117. doi: 10.3934/ipi.2011.5.1 
[14] 
Lianwang Deng. Local integral manifolds for nonautonomous and illposed equations with sectorially dichotomous operator. Communications on Pure & Applied Analysis, 2020, 19 (1) : 145174. doi: 10.3934/cpaa.2020009 
[15] 
Peter I. Kogut, Olha P. Kupenko. On optimal control problem for an illposed strongly nonlinear elliptic equation with $p$Laplace operator and $L^1$type of nonlinearity. Discrete & Continuous Dynamical Systems  B, 2019, 24 (3) : 12731295. doi: 10.3934/dcdsb.2019016 
[16] 
Youri V. Egorov, Evariste SanchezPalencia. Remarks on certain singular perturbations with illposed limit in shell theory and elasticity. Discrete & Continuous Dynamical Systems  A, 2011, 31 (4) : 12931305. doi: 10.3934/dcds.2011.31.1293 
[17] 
Alfredo Lorenzi, Luca Lorenzi. A strongly illposed integrodifferential singular parabolic problem in the unit cube of $\mathbb{R}^n$. Evolution Equations & Control Theory, 2014, 3 (3) : 499524. doi: 10.3934/eect.2014.3.499 
[18] 
Faker Ben Belgacem. Uniqueness for an illposed reactiondispersion model. Application to organic pollution in streamwaters. Inverse Problems & Imaging, 2012, 6 (2) : 163181. doi: 10.3934/ipi.2012.6.163 
[19] 
Jiongmin Yong. Forwardbackward evolution equations and applications. Mathematical Control & Related Fields, 2016, 6 (4) : 653704. doi: 10.3934/mcrf.2016019 
[20] 
Pavol Quittner. The decay of global solutions of a semilinear heat equation. Discrete & Continuous Dynamical Systems  A, 2008, 21 (1) : 307318. doi: 10.3934/dcds.2008.21.307 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]