2015, 2015(special): 495-504. doi: 10.3934/proc.2015.0495

3D reconstruction for partial data electrical impedance tomography using a sparsity prior

1. 

Department of Applied Mathematics and Computer Science, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark

2. 

Danmarks Tekniske Universitet, Department of Applied Mathematics and Computer Science, Matematiktorvet, Building 303 B, DK - 2800 Kgs. Lyngby

Received  September 2014 Revised  August 2015 Published  November 2015

In electrical impedance tomography the electrical conductivity inside a physical body is computed from electro-static boundary measurements. The focus of this paper is to extend recent results for the 2D problem to 3D: prior information about the sparsity and spatial distribution of the conductivity is used to improve reconstructions for the partial data problem with Cauchy data measured only on a subset of the boundary. A sparsity prior is enforced using the $\ell_1$ norm in the penalty term of a Tikhonov functional, and spatial prior information is incorporated by applying a spatially distributed regularization parameter. The optimization problem is solved numerically using a generalized conditional gradient method with soft thresholding. Numerical examples show the effectiveness of the suggested method even for the partial data problem with measurements affected by noise.
Citation: Henrik Garde, Kim Knudsen. 3D reconstruction for partial data electrical impedance tomography using a sparsity prior. Conference Publications, 2015, 2015 (special) : 495-504. doi: 10.3934/proc.2015.0495
References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, $2^{nd}$ edition, (2003).   Google Scholar

[2]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153.   Google Scholar

[3]

T. Bonesky, K. Bredies, D. A. Lorenz and P. Maass, A generalized conditional gradient method for nonlinear operator equations with sparsity constraints,, Inverse Problems, 23 (2007), 2041.   Google Scholar

[4]

K. Bredies, D. A. Lorenz and P. Maass, A generalized conditional gradient method and its connection to an iterative shrinkage method,, Comput. Optim. Appl., 42 (2009), 173.   Google Scholar

[5]

A. L. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data,, Comm. Partial Differential Equations, 27 (2002), 653.   Google Scholar

[6]

A.-P. Calderón, On an inverse boundary value problem,, in Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980), 65.   Google Scholar

[7]

I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,, Comm. Pure Appl. Math., 57 (2004), 1413.   Google Scholar

[8]

H. Garde and K. Knudsen, Sparsity prior for electrical impedance tomography with partial data,, Inverse Probl. Sci. Eng., (2015).   Google Scholar

[9]

M. Gehre, T. Kluth, A. Lipponen, B. Jin, A. Seppänen, J. P. Kaipio and P. Maass, Sparsity reconstruction in electrical impedance tomography: an experimental evaluation,, J. Comput. Appl. Math., 236 (2012), 2126.   Google Scholar

[10]

B. von Harrach and J. K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography,, SIAM J. Math. Anal., 42 (2010), 1505.   Google Scholar

[11]

B. von Harrach and M. Ullrich, Monotonicity-based shape reconstruction in electrical impedance tomography,, SIAM J. Math. Anal., 45 (2013), 3382.   Google Scholar

[12]

H. Heck and J.-N. Wang, Stability estimates for the inverse boundary value problem by partial Cauchy data,, Inverse Problems, 22 (2006), 1787.   Google Scholar

[13]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Probl. Imaging, 1 (2007), 95.   Google Scholar

[14]

B. Jin, T. Khan and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization,, Internat. J. Numer. Methods Engrg., 89 (2012), 337.   Google Scholar

[15]

B. Jin and P. Maass, An analysis of electrical impedance tomography with applications to Tikhonov regularization,, ESAIM: Control, 18 (2012), 1027.   Google Scholar

[16]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data,, Ann. of Math. (2), 165 (2007), 567.   Google Scholar

[17]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).   Google Scholar

[18]

K. Knudsen, The Calderón problem with partial data for less smooth conductivities,, Comm. Partial Differential Equations, 31 (2006), 57.   Google Scholar

[19]

A. Logg, K.-A. Mardal and G. N. Wells, Automated Solution of Differential Equations by the Finite Element Method,, Springer, (2012).   Google Scholar

[20]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189.   Google Scholar

[21]

S. J. Wright, R. D. Nowak and M. A. T. Figueiredo, Sparse reconstruction by separable approximation,, IEEE Trans. Signal Process., 57 (2009), 2479.   Google Scholar

show all references

References:
[1]

R. A. Adams and J. J. F. Fournier, Sobolev Spaces,, $2^{nd}$ edition, (2003).   Google Scholar

[2]

G. Alessandrini, Stable determination of conductivity by boundary measurements,, Appl. Anal., 27 (1988), 153.   Google Scholar

[3]

T. Bonesky, K. Bredies, D. A. Lorenz and P. Maass, A generalized conditional gradient method for nonlinear operator equations with sparsity constraints,, Inverse Problems, 23 (2007), 2041.   Google Scholar

[4]

K. Bredies, D. A. Lorenz and P. Maass, A generalized conditional gradient method and its connection to an iterative shrinkage method,, Comput. Optim. Appl., 42 (2009), 173.   Google Scholar

[5]

A. L. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data,, Comm. Partial Differential Equations, 27 (2002), 653.   Google Scholar

[6]

A.-P. Calderón, On an inverse boundary value problem,, in Seminar on Numerical Analysis and its Applications to Continuum Physics, (1980), 65.   Google Scholar

[7]

I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,, Comm. Pure Appl. Math., 57 (2004), 1413.   Google Scholar

[8]

H. Garde and K. Knudsen, Sparsity prior for electrical impedance tomography with partial data,, Inverse Probl. Sci. Eng., (2015).   Google Scholar

[9]

M. Gehre, T. Kluth, A. Lipponen, B. Jin, A. Seppänen, J. P. Kaipio and P. Maass, Sparsity reconstruction in electrical impedance tomography: an experimental evaluation,, J. Comput. Appl. Math., 236 (2012), 2126.   Google Scholar

[10]

B. von Harrach and J. K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography,, SIAM J. Math. Anal., 42 (2010), 1505.   Google Scholar

[11]

B. von Harrach and M. Ullrich, Monotonicity-based shape reconstruction in electrical impedance tomography,, SIAM J. Math. Anal., 45 (2013), 3382.   Google Scholar

[12]

H. Heck and J.-N. Wang, Stability estimates for the inverse boundary value problem by partial Cauchy data,, Inverse Problems, 22 (2006), 1787.   Google Scholar

[13]

V. Isakov, On uniqueness in the inverse conductivity problem with local data,, Inverse Probl. Imaging, 1 (2007), 95.   Google Scholar

[14]

B. Jin, T. Khan and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization,, Internat. J. Numer. Methods Engrg., 89 (2012), 337.   Google Scholar

[15]

B. Jin and P. Maass, An analysis of electrical impedance tomography with applications to Tikhonov regularization,, ESAIM: Control, 18 (2012), 1027.   Google Scholar

[16]

C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data,, Ann. of Math. (2), 165 (2007), 567.   Google Scholar

[17]

A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems,, Oxford University Press, (2008).   Google Scholar

[18]

K. Knudsen, The Calderón problem with partial data for less smooth conductivities,, Comm. Partial Differential Equations, 31 (2006), 57.   Google Scholar

[19]

A. Logg, K.-A. Mardal and G. N. Wells, Automated Solution of Differential Equations by the Finite Element Method,, Springer, (2012).   Google Scholar

[20]

G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus,, Ann. Inst. Fourier (Grenoble), 15 (1965), 189.   Google Scholar

[21]

S. J. Wright, R. D. Nowak and M. A. T. Figueiredo, Sparse reconstruction by separable approximation,, IEEE Trans. Signal Process., 57 (2009), 2479.   Google Scholar

[1]

Zexuan Liu, Zhiyuan Sun, Jerry Zhijian Yang. A numerical study of superconvergence of the discontinuous Galerkin method by patch reconstruction. Electronic Research Archive, 2020, 28 (4) : 1487-1501. doi: 10.3934/era.2020078

[2]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[3]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[4]

Nicolas Rougerie. On two properties of the Fisher information. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020049

[5]

Andy Hammerlindl, Jana Rodriguez Hertz, Raúl Ures. Ergodicity and partial hyperbolicity on Seifert manifolds. Journal of Modern Dynamics, 2020, 16: 331-348. doi: 10.3934/jmd.2020012

[6]

Shengxin Zhu, Tongxiang Gu, Xingping Liu. AIMS: Average information matrix splitting. Mathematical Foundations of Computing, 2020, 3 (4) : 301-308. doi: 10.3934/mfc.2020012

[7]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[8]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[9]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[10]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[11]

Vieri Benci, Marco Cococcioni. The algorithmic numbers in non-archimedean numerical computing environments. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020449

[12]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[13]

Christopher S. Goodrich, Benjamin Lyons, Mihaela T. Velcsov. Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020269

[14]

Omid Nikan, Seyedeh Mahboubeh Molavi-Arabshai, Hossein Jafari. Numerical simulation of the nonlinear fractional regularized long-wave model arising in ion acoustic plasma waves. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020466

 Impact Factor: 

Metrics

  • PDF downloads (57)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]