Citation: |
[1] |
R. A. Adams and J. J. F. Fournier, Sobolev Spaces, $2^{nd}$ edition, Pure and Applied Mathematics, Amsterdam, 2003. |
[2] |
G. Alessandrini, Stable determination of conductivity by boundary measurements, Appl. Anal., 27 (1988), 153-172. |
[3] |
T. Bonesky, K. Bredies, D. A. Lorenz and P. Maass, A generalized conditional gradient method for nonlinear operator equations with sparsity constraints, Inverse Problems, 23 (2007), 2041-2058. |
[4] |
K. Bredies, D. A. Lorenz and P. Maass, A generalized conditional gradient method and its connection to an iterative shrinkage method, Comput. Optim. Appl., 42 (2009), 173-193. |
[5] |
A. L. Bukhgeim and G. Uhlmann, Recovering a potential from partial Cauchy data, Comm. Partial Differential Equations, 27 (2002), 653-668. |
[6] |
A.-P. Calderón, On an inverse boundary value problem, in Seminar on Numerical Analysis and its Applications to Continuum Physics, Soc. Brasil. Mat., (1980), 65-73. |
[7] |
I. Daubechies, M. Defrise and C. De Mol, An iterative thresholding algorithm for linear inverse problems with a sparsity constraint, Comm. Pure Appl. Math., 57 (2004), 1413-1457. |
[8] |
H. Garde and K. Knudsen, Sparsity prior for electrical impedance tomography with partial data, Inverse Probl. Sci. Eng., (2015), DOI: 10.1080/17415977.2015.1047365. |
[9] |
M. Gehre, T. Kluth, A. Lipponen, B. Jin, A. Seppänen, J. P. Kaipio and P. Maass, Sparsity reconstruction in electrical impedance tomography: an experimental evaluation, J. Comput. Appl. Math., 236 (2012), 2126-2136. |
[10] |
B. von Harrach and J. K. Seo, Exact shape-reconstruction by one-step linearization in electrical impedance tomography, SIAM J. Math. Anal., 42 (2010), 1505-1518. |
[11] |
B. von Harrach and M. Ullrich, Monotonicity-based shape reconstruction in electrical impedance tomography, SIAM J. Math. Anal., 45 (2013), 3382-3403. |
[12] |
H. Heck and J.-N. Wang, Stability estimates for the inverse boundary value problem by partial Cauchy data, Inverse Problems, 22 (2006), 1787-1796. |
[13] |
V. Isakov, On uniqueness in the inverse conductivity problem with local data, Inverse Probl. Imaging, 1 (2007), 95-105. |
[14] |
B. Jin, T. Khan and P. Maass, A reconstruction algorithm for electrical impedance tomography based on sparsity regularization, Internat. J. Numer. Methods Engrg., 89 (2012), 337-353. |
[15] |
B. Jin and P. Maass, An analysis of electrical impedance tomography with applications to Tikhonov regularization, ESAIM: Control, Optimisation and Calculus of Variations, 18 (2012), 1027-1048. |
[16] |
C. E. Kenig, J. Sjöstrand and G. Uhlmann, The Calderón problem with partial data, Ann. of Math. (2), 165 (2007), 567-591. |
[17] |
A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, Oxford University Press, Oxford, 2008. |
[18] |
K. Knudsen, The Calderón problem with partial data for less smooth conductivities, Comm. Partial Differential Equations, 31 (2006), 57-71. |
[19] |
A. Logg, K.-A. Mardal and G. N. Wells, Automated Solution of Differential Equations by the Finite Element Method, Springer, Heidelberg, 2012. |
[20] |
G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier (Grenoble), 15 (1965), 189-257. |
[21] |
S. J. Wright, R. D. Nowak and M. A. T. Figueiredo, Sparse reconstruction by separable approximation, IEEE Trans. Signal Process., 57 (2009), 2479-2493. |