Citation: |
[1] |
J. M. Coron, Control and Nonlinearity, Mathematical Surveys and Monographs 136, American Mathematical Society, Providence, RI, 2007. |
[2] |
F. Dubois, N. Petit and P. Rochon, Motion planning and nonlinear simulations for a tank containing a fluid, in Proc. of the 5th European Control Conf. (ECC 99), Karlsruhe, 31.08.-03.09.1999. |
[3] |
L. C. Evans, Partial Differential Equations, $2^{nd}$ edition, Graduate Studies in Mathematics 19, American Mathematical Society, Providence, RI, 2010. |
[4] |
M. Gerdts, Optimal Control of ODEs and DAEs, de Gruyter Textbook, Walter de Gruyter & Co., Berlin, 2012. |
[5] |
M. Gerdts, OCPID-DAE1, Optimal Control and Parameter Identification with Differential-Algebraic Equations of Index 1. User Guide (Online Documentation), Universität der Bundeswehr München, Neubiberg/München, 2010. |
[6] |
M. Gugat and G. Leugering, Global boundary controllability of the De St. Venant equations between steady states, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 1-11. |
[7] |
M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction, Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 257-270. |
[8] |
D. Kroener, Numerical Schemes for Conservation Laws, Wiley-Teubner Series Advances in Numerical Mathematics, John Wiley & Sons, Ltd., Chichester / B. G. Teubner, Stuttgart, 1997. |
[9] |
A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system, M2AN Math. Model. Numer. Anal., 36 (2002), 397-425. |
[10] |
P. D. Lax, Hyperbolic Partial Differential Equations, with an appendix by Cathleen S. Morawetz, Courant Lecture Notes in Mathematics 14, New York University, Courant Institute of Mathematical Sciences, New York / American Mathematical Society, Providence, RI, 2006. |
[11] |
C. B. Vreugdenhil, Numerical Methods for Shallow-Water Flow, reprinted edition, Kluwer Academic Publishers, Dordrecht , 1998. |