2015, 2015(special): 515-524. doi: 10.3934/proc.2015.0515

Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin

1. 

Institut für Mathematik und Rechneranwendung (LRT-1), Universität der Bundeswehr München, Werner-Heisenberg-Weg 39, 85577 Neubiberg/München, Germany, Germany

Received  September 2014 Revised  June 2015 Published  November 2015

We consider a numerical study of an optimal control problem for a truck with a fluid basin, which leads to an optimal control problem with a coupled system of partial differential equations (PDEs) and ordinary differential equations (ODEs). The motion of the fluid in the basin is modeled by the nonlinear hyperbolic Saint-Venant (shallow water) equations while the vehicle dynamics are described by the equations of motion of a mechanical multi-body system. These equations are fully coupled through boundary conditions and force terms. We pursue a first-discretize-then-optimize approach using a Lax-Friedrich scheme. To this end a reduced optimization problem is obtained by a direct shooting approach and solved by a sequential quadratic programming method. For the computation of gradients we employ an efficient adjoint scheme. Numerical case studies for optimal braking maneuvers of the truck and the basin filled with a fluid are presented.
Citation: Matthias Gerdts, Sven-Joachim Kimmerle. Numerical optimal control of a coupled ODE-PDE model of a truck with a fluid basin. Conference Publications, 2015, 2015 (special) : 515-524. doi: 10.3934/proc.2015.0515
References:
[1]

J. M. Coron, Control and Nonlinearity,, Mathematical Surveys and Monographs 136, (2007).   Google Scholar

[2]

F. Dubois, N. Petit and P. Rochon, Motion planning and nonlinear simulations for a tank containing a fluid,, in Proc. of the 5th European Control Conf. (ECC 99), ().   Google Scholar

[3]

L. C. Evans, Partial Differential Equations,, $2^{nd}$ edition, (2010).   Google Scholar

[4]

M. Gerdts, Optimal Control of ODEs and DAEs,, de Gruyter Textbook, (2012).   Google Scholar

[5]

M. Gerdts, OCPID-DAE1, Optimal Control and Parameter Identification with Differential-Algebraic Equations of Index 1. User Guide (Online Documentation),, Universität der Bundeswehr München, (2010).   Google Scholar

[6]

M. Gugat and G. Leugering, Global boundary controllability of the De St. Venant equations between steady states,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 1.   Google Scholar

[7]

M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction,, Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 257.   Google Scholar

[8]

D. Kroener, Numerical Schemes for Conservation Laws,, Wiley-Teubner Series Advances in Numerical Mathematics, (1997).   Google Scholar

[9]

A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system,, M2AN Math. Model. Numer. Anal., 36 (2002), 397.   Google Scholar

[10]

P. D. Lax, Hyperbolic Partial Differential Equations,, with an appendix by Cathleen S. Morawetz, (2006).   Google Scholar

[11]

C. B. Vreugdenhil, Numerical Methods for Shallow-Water Flow,, reprinted edition, (1998).   Google Scholar

show all references

References:
[1]

J. M. Coron, Control and Nonlinearity,, Mathematical Surveys and Monographs 136, (2007).   Google Scholar

[2]

F. Dubois, N. Petit and P. Rochon, Motion planning and nonlinear simulations for a tank containing a fluid,, in Proc. of the 5th European Control Conf. (ECC 99), ().   Google Scholar

[3]

L. C. Evans, Partial Differential Equations,, $2^{nd}$ edition, (2010).   Google Scholar

[4]

M. Gerdts, Optimal Control of ODEs and DAEs,, de Gruyter Textbook, (2012).   Google Scholar

[5]

M. Gerdts, OCPID-DAE1, Optimal Control and Parameter Identification with Differential-Algebraic Equations of Index 1. User Guide (Online Documentation),, Universität der Bundeswehr München, (2010).   Google Scholar

[6]

M. Gugat and G. Leugering, Global boundary controllability of the De St. Venant equations between steady states,, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20 (2003), 1.   Google Scholar

[7]

M. Gugat and G. Leugering, Global boundary controllability of the Saint-Venant system for sloped canals with friction,, Inst. H. Poincaré Anal. Non Linéaire, 26 (2009), 257.   Google Scholar

[8]

D. Kroener, Numerical Schemes for Conservation Laws,, Wiley-Teubner Series Advances in Numerical Mathematics, (1997).   Google Scholar

[9]

A. Kurganov and D. Levy, Central-upwind schemes for the Saint-Venant system,, M2AN Math. Model. Numer. Anal., 36 (2002), 397.   Google Scholar

[10]

P. D. Lax, Hyperbolic Partial Differential Equations,, with an appendix by Cathleen S. Morawetz, (2006).   Google Scholar

[11]

C. B. Vreugdenhil, Numerical Methods for Shallow-Water Flow,, reprinted edition, (1998).   Google Scholar

[1]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[2]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[3]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[4]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[5]

Peter H. van der Kamp, D. I. McLaren, G. R. W. Quispel. Homogeneous darboux polynomials and generalising integrable ODE systems. Journal of Computational Dynamics, 2021, 8 (1) : 1-8. doi: 10.3934/jcd.2021001

[6]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[7]

Shao-Xia Qiao, Li-Jun Du. Propagation dynamics of nonlocal dispersal equations with inhomogeneous bistable nonlinearity. Electronic Research Archive, , () : -. doi: 10.3934/era.2020116

[8]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[9]

Jun Zhou. Lifespan of solutions to a fourth order parabolic PDE involving the Hessian modeling epitaxial growth. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5581-5590. doi: 10.3934/cpaa.2020252

[10]

Haodong Yu, Jie Sun. Robust stochastic optimization with convex risk measures: A discretized subgradient scheme. Journal of Industrial & Management Optimization, 2021, 17 (1) : 81-99. doi: 10.3934/jimo.2019100

[11]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[12]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, 2021, 20 (1) : 389-404. doi: 10.3934/cpaa.2020273

[13]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[14]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[15]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[16]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[17]

Hua Qiu, Zheng-An Yao. The regularized Boussinesq equations with partial dissipations in dimension two. Electronic Research Archive, 2020, 28 (4) : 1375-1393. doi: 10.3934/era.2020073

[18]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[19]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[20]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

 Impact Factor: 

Metrics

  • PDF downloads (93)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]