2015, 2015(special): 525-532. doi: 10.3934/proc.2015.0525

A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems

1. 

Departamento de Matemáticas, Universidade da Coruña, Campus de Elviña s/n 15071 A Coruña, Spain

2. 

Basque Center for Applied Mathematics, Alameda Mazarredo 14, 48009 Bilbao, Spain

3. 

Department of Computing, Mathematics and Physics, Bergen University College, Bergen, Norway

Received  September 2014 Revised  September 2015 Published  November 2015

We present an augmented dual-mixed variational formulation for a linear convection-diffusion equation with homogeneous Dirichlet boundary conditions. The approach is based on the addition of suitable least squares type terms. We prove that for appropriate values of the stabilization parameters, that depend on the diffusion coefficient and the magnitude of the convective velocity, the new variational formulation and the corresponding Galerkin scheme are well-posed, and a Céa estimate holds. In particular, we derive the rate of convergence when the flux and the concentration are approximated, respectively, by Raviart-Thomas and continuous piecewise polynomials. In addition, we introduce a simple a posteriori error estimator which is reliable and locally efficient. Finally, we provide numerical experiments that illustrate the behavior of the method.
Citation: M. González, J. Jansson, S. Korotov. A posteriori error analysis of a stabilized mixed FEM for convection-diffusion problems. Conference Publications, 2015, 2015 (special) : 525-532. doi: 10.3934/proc.2015.0525
References:
[1]

T. P. Barrios, J. M. Cascón and M. González, A posteriori error analysis of an augmented mixed finite element method for Darcy flow,, Comput. Methods Appl. Mech. Engrg., 283 (2015), 909.   Google Scholar

[2]

J. Douglas Jr. and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations,, Math. Comp., 44 (1985), 39.   Google Scholar

[3]

A. Ern and A. F. Stephansen, A posterior energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods,, J. Comput. Math., 26 (2008), 488.   Google Scholar

[4]

A. Masud and T. J. R. Hughes, A stabilized mixed finite element method for Darcy flow,, Comput. Methods Appl. Mech. Engrg., 191 (2002), 4341.   Google Scholar

[5]

J. E. Roberts and J. M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis,, edited by P.G. Ciarlet and J.L. Lions, (1991).   Google Scholar

show all references

References:
[1]

T. P. Barrios, J. M. Cascón and M. González, A posteriori error analysis of an augmented mixed finite element method for Darcy flow,, Comput. Methods Appl. Mech. Engrg., 283 (2015), 909.   Google Scholar

[2]

J. Douglas Jr. and J. E. Roberts, Global estimates for mixed methods for second order elliptic equations,, Math. Comp., 44 (1985), 39.   Google Scholar

[3]

A. Ern and A. F. Stephansen, A posterior energy-norm error estimates for advection-diffusion equations approximated by weighted interior penalty methods,, J. Comput. Math., 26 (2008), 488.   Google Scholar

[4]

A. Masud and T. J. R. Hughes, A stabilized mixed finite element method for Darcy flow,, Comput. Methods Appl. Mech. Engrg., 191 (2002), 4341.   Google Scholar

[5]

J. E. Roberts and J. M. Thomas, Mixed and Hybrid Methods, in Handbook of Numerical Analysis,, edited by P.G. Ciarlet and J.L. Lions, (1991).   Google Scholar

[1]

Shenglan Xie, Maoan Han, Peng Zhu. A posteriori error estimate of weak Galerkin fem for second order elliptic problem with mixed boundary condition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020340

[2]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[3]

Yue Feng, Yujie Liu, Ruishu Wang, Shangyou Zhang. A conforming discontinuous Galerkin finite element method on rectangular partitions. Electronic Research Archive, , () : -. doi: 10.3934/era.2020120

[4]

Gang Bao, Mingming Zhang, Bin Hu, Peijun Li. An adaptive finite element DtN method for the three-dimensional acoustic scattering problem. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020351

[5]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[6]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[7]

Hao Wang. Uniform stability estimate for the Vlasov-Poisson-Boltzmann system. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 657-680. doi: 10.3934/dcds.2020292

[8]

Huiying Fan, Tao Ma. Parabolic equations involving Laguerre operators and weighted mixed-norm estimates. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5487-5508. doi: 10.3934/cpaa.2020249

[9]

Juan Pablo Pinasco, Mauro Rodriguez Cartabia, Nicolas Saintier. Evolutionary game theory in mixed strategies: From microscopic interactions to kinetic equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020051

[10]

Jie Zhang, Yuping Duan, Yue Lu, Michael K. Ng, Huibin Chang. Bilinear constraint based ADMM for mixed Poisson-Gaussian noise removal. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020071

[11]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[12]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, 2021, 20 (1) : 359-368. doi: 10.3934/cpaa.2020270

[13]

Claudianor O. Alves, Rodrigo C. M. Nemer, Sergio H. Monari Soares. The use of the Morse theory to estimate the number of nontrivial solutions of a nonlinear Schrödinger equation with a magnetic field. Communications on Pure & Applied Analysis, 2021, 20 (1) : 449-465. doi: 10.3934/cpaa.2020276

[14]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[15]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

 Impact Factor: 

Metrics

  • PDF downloads (36)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]