2015, 2015(special): 533-539. doi: 10.3934/proc.2015.0533

Existence of homoclinic solutions for second order difference equations with $p$-laplacian

1. 

Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN 37403, United States

2. 

Equifax Inc., Alpharetta, GA 30005, United States

Received  August 2014 Revised  December 2014 Published  November 2015

Using the variational method and critical point theory, the authors study the existence of infinitely many homoclinic solutions to the difference equation \begin{equation*} -\Delta \big(a(k)\phi_p(\Delta u(k-1))\big)+b(k)\phi_p(u(k))=\lambda f(k,u(k))),\quad k\in\mathbb{Z}, \end{equation*} where $p>1$ is a real number, $\phi_p(t)=|t|^{p-2}t$ for $t\in\mathbb{R}$, $\lambda>0$ is a parameter, $a, b:\mathbb{Z}\to (0,\infty)$, and $f: \mathbb{Z}\times\mathbb{R}\to\mathbb{R}$ is continuous in the second variable. Related results in the literature are extended.
Citation: John R. Graef, Lingju Kong, Min Wang. Existence of homoclinic solutions for second order difference equations with $p$-laplacian. Conference Publications, 2015, 2015 (special) : 533-539. doi: 10.3934/proc.2015.0533
References:
[1]

P. Chen, X. Tang, and R. P. Agarwal, Existence of homoclinic solutions for $p(n)$-Laplacian Hamiltonian systems on Orlicz sequence spaces,, Math. Comput. Modelling, 55 (2012), 989.   Google Scholar

[2]

M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach Space Theory,, Springer, (2011).   Google Scholar

[3]

J. R. Graef, L. Kong, and M. Wang, Infinitely many homoclinic solutions for second order difference equations with $p$-Laplacian,, Commun. Appl. Anal., ().   Google Scholar

[4]

A. Iannizzotto and S. A. Tersian, Multiple homoclinic solutions for the discrete $p$-Laplacian via critical point theory,, J. Math. Anal. Appl., 403 (2013), 173.   Google Scholar

[5]

R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations,, J. Funct. Anal., 225 (2005), 352.   Google Scholar

[6]

M. Ma and Z. Guo, Homoclinic orbits for second order self-adjoint difference equations,, J. Math. Anal. Appl., 323 (2006), 513.   Google Scholar

[7]

M. Mihăilescu, V. Rădulescu, and S. Tersian, Homoclinic solutions of difference equations with variable exponents,, Topol. Methods Nonlinear Anal., 38 (2011), 277.   Google Scholar

[8]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Appl. Math. Sci., 74 (1989).   Google Scholar

[9]

X. Tang and X. Lin, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems,, J. Math. Anal. Appl. 373 (2011), 373 (2011), 59.   Google Scholar

[10]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. III,, Springer, (1985).   Google Scholar

[11]

Z. Zhang and R. Yuan, Homoclinic solutions for a class of non-autonomous subquadratic second order Hamiltonian systems,, Nonlinear Anal., 71 (2009), 4125.   Google Scholar

show all references

References:
[1]

P. Chen, X. Tang, and R. P. Agarwal, Existence of homoclinic solutions for $p(n)$-Laplacian Hamiltonian systems on Orlicz sequence spaces,, Math. Comput. Modelling, 55 (2012), 989.   Google Scholar

[2]

M. Fabian, P. Habala, P. Hájek, V. Montesinos, and V. Zizler, Banach Space Theory,, Springer, (2011).   Google Scholar

[3]

J. R. Graef, L. Kong, and M. Wang, Infinitely many homoclinic solutions for second order difference equations with $p$-Laplacian,, Commun. Appl. Anal., ().   Google Scholar

[4]

A. Iannizzotto and S. A. Tersian, Multiple homoclinic solutions for the discrete $p$-Laplacian via critical point theory,, J. Math. Anal. Appl., 403 (2013), 173.   Google Scholar

[5]

R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations,, J. Funct. Anal., 225 (2005), 352.   Google Scholar

[6]

M. Ma and Z. Guo, Homoclinic orbits for second order self-adjoint difference equations,, J. Math. Anal. Appl., 323 (2006), 513.   Google Scholar

[7]

M. Mihăilescu, V. Rădulescu, and S. Tersian, Homoclinic solutions of difference equations with variable exponents,, Topol. Methods Nonlinear Anal., 38 (2011), 277.   Google Scholar

[8]

J. Mawhin and M. Willem, Critical Point Theory and Hamiltonian Systems,, Appl. Math. Sci., 74 (1989).   Google Scholar

[9]

X. Tang and X. Lin, Existence of infinitely many homoclinic orbits in discrete Hamiltonian systems,, J. Math. Anal. Appl. 373 (2011), 373 (2011), 59.   Google Scholar

[10]

E. Zeidler, Nonlinear Functional Analysis and its Applications, Vol. III,, Springer, (1985).   Google Scholar

[11]

Z. Zhang and R. Yuan, Homoclinic solutions for a class of non-autonomous subquadratic second order Hamiltonian systems,, Nonlinear Anal., 71 (2009), 4125.   Google Scholar

[1]

Héctor Barge. Čech cohomology, homoclinic trajectories and robustness of non-saddle sets. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020381

[2]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[3]

Alberto Bressan, Wen Shen. A posteriori error estimates for self-similar solutions to the Euler equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 113-130. doi: 10.3934/dcds.2020168

[4]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[5]

Christian Beck, Lukas Gonon, Martin Hutzenthaler, Arnulf Jentzen. On existence and uniqueness properties for solutions of stochastic fixed point equations. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020320

[6]

Hoang The Tuan. On the asymptotic behavior of solutions to time-fractional elliptic equations driven by a multiplicative white noise. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020318

[7]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[8]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

[9]

Qingfang Wang, Hua Yang. Solutions of nonlocal problem with critical exponent. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5591-5608. doi: 10.3934/cpaa.2020253

[10]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[11]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[12]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[13]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[14]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[15]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[16]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[17]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[18]

Pierre-Etienne Druet. A theory of generalised solutions for ideal gas mixtures with Maxwell-Stefan diffusion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020458

[19]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[20]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

 Impact Factor: 

Metrics

  • PDF downloads (33)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]