[1]
|
E. Akin and E. Glasner, Topological ergodic decomposition and homogeneous flows, Topological Dynamics and Applications (eds. M. G. Nerurkar, D. P. Dokken and D. B. Ellis), Contemp. Math., 215, AMS, Providence, RI, (1998), 43-52.
|
[2]
|
G. Atkinson, A class of transitive cylinder transformations, J. London Math. Soc. (2), 17 (1978), 263-270.
|
[3]
|
R. Ellis, Distal transformation groups, Pacific Journal Math., 8 (1958), 401-405.
|
[4]
|
R. Ellis, The Veech structure theorem, Trans. Amer. Math. Soc., 186 (1973), 203-218.
|
[5]
|
E. E. Floyd, A nonhomogeneous minimal set, Bull. Amer. Math. Soc., 55 (1949), 957-960.
|
[6]
|
H. Furstenberg, The structure of distal flows, Amer. J. Math., 85 (1963), 477-515.
|
[7]
|
E. Glasner, Relatively invariant measures, Pacific J. Math., 58 (1975), 393-410.
|
[8]
|
W. H. Gottschalk and G. A. Hedlund, Topological Dynamics, American Mathematical Society Colloquium Publications, Vol. 36, AMS, Providence, R. I., 1955.
|
[9]
|
G. Greschonig, Real extensions of distal minimal flows and continuous topological ergodic decompositions, Proc. Lond. Math. Soc. (3), 109 (2014), 213-240.
|
[10]
|
K. N. Haddad and A. S. A. Johnson, Auslander systems, Proc. Amer. Math. Soc., 125 (1997), 2161-2170.
|
[11]
|
M. Lemańczyk and M. Mentzen, Topological ergodicity of real cocycles over minimal rotations, Monatsh. Math., 134 (2002), 227-246.
|
[12]
|
D. McMahon and T. S. Wu, On the connectedness of homomorphisms in topological dynamics, Trans. Amer. Math. Soc., 217 (1976), 257-270.
|
[13]
|
M. Rees, A point distal transformation of the torus, Israel J. Math., 32 (1979), 201-208.
|
[14]
|
K. Schmidt, Cocycles on Ergodic Transformation Groups, Macmillan Lectures in Mathematics, Vol. 1, Macmillan Company of India, Ltd., Delhi, 1977.
|
[15]
|
W. A. Veech, Point-distal flows, Amer. J. Math., 92 (1970), 205-242.
|