2015, 2015(special): 549-561. doi: 10.3934/proc.2015.0549

Optimal control for an epidemic in populations of varying size

1. 

Department of Mathematics and Computer Sciences, Texas Woman's University, Denton, TX 76204

2. 

Department of Computer Mathematics and Cybernetics, Moscow State Lomonosov University, Moscow, 119992

3. 

Centre de Recerca Matemática, Campus de Bellaterra, Edifici C, 08193 Barcelona

Received  September 2014 Revised  February 2015 Published  November 2015

For a Susceptible-Infected-Recovered (SIR) control model with varying population size, the optimal control problem of minimization of the infected individuals at a terminal time is stated and solved. Three distinctive control policies are considered, namely the vaccination of the susceptible individuals, treatment of the infected individuals and an indirect policy aimed at reduction of the transmission. Such values of the model parameters and control constraints are used, for which the optimal controls are bang-bang. We estimated the maximal possible number of switchings of these controls, which task is related to the estimation of the number of zeros of the corresponding switching functions. Different approaches of estimating the number of zeros of the switching functions are applied. The found estimates enable us to reduce the optimal control problem to a considerably simpler problem of the finite-dimensional constrained minimization.
Citation: Ellina Grigorieva, Evgenii Khailov, Andrei Korobeinikov. Optimal control for an epidemic in populations of varying size. Conference Publications, 2015, 2015 (special) : 549-561. doi: 10.3934/proc.2015.0549
References:
[1]

M. Alkama, M. Elhia, Z. Rachik, M. Rachik and E. Labriji, Free terminal time optimal control problem of an SIR epidemic model with vaccination,, International Journal of Science and Research, 3 (2014), 227.   Google Scholar

[2]

R.M. Anderson and R.M. May, Infectious Diseases of Humans: Dynamics and Control,, Oxford University Press, (1992).   Google Scholar

[3]

H. Behncke, Optimal control of deterministic epidemics,, Optimal Control Applications and Methods, 21 (2000), 269.   Google Scholar

[4]

F. Brauer, Some simple epidemic models,, Mathematical Biosciences and Engineering, 3 (2006), 1.   Google Scholar

[5]

V. Capasso, Mathematical Structures of Epidemic Systems,, Lecture Notes in Biomathematics, (2008).   Google Scholar

[6]

C. Castilho, Optimal control of an epidemic through educational campaigns,, Electronic Journal of Differential Equations, 2006 (2006), 1.   Google Scholar

[7]

D.J. Daley and J. Gani, Epidemic Modelling: An Introduction,, Cambridge University Press, (1999).   Google Scholar

[8]

O. Diekmann and J.A.P. Heesterbeek, Mathematical Epidemiology of Infectiuos Diseases. Model Building, Analysis and Interpretation,, John Wiley & Sons, (2000).   Google Scholar

[9]

A.V. Dmitruk, A generalized estimate on the number of zeros for solutions of a class of linear differential equations,, SIAM Journal on Control and Optimization, 30 (1992), 1087.   Google Scholar

[10]

M. Elhia, O. Balatif, J. Bouyaghroumni, E. Labriji and M. Rachik, Optimal control applied to the spread of influenza A (H1N1),, Applied Mathematical Sciences, 6 (2012), 4057.   Google Scholar

[11]

H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models,, Mathematical Biosciences and Engineering, 6 (2009), 469.   Google Scholar

[12]

E. Grigorieva, N. Bondarenko, E. Khailov and A. Korobeinikov, Finite-Dimensional Methods for Optimal Control of Autothermal Thermophilic Aerobic Digestion,, in Industrial Waste, (2012), 91.   Google Scholar

[13]

E.V. Grigorieva, E.N. Khailov and A. Korobeinikov, Parametrization of the attainable set for a nonlinear control model of a biochemical process,, Mathematical Biosciences and Engineering, 10 (2013), 1067.   Google Scholar

[14]

E. Grigorieva, E. Khailov and A. Korobeinikov, Optimal control for a susceptible-infected-recovered infectious disease model,, Journal of Coupled Systems and Multiscale Dynamics, 1 (2013), 324.   Google Scholar

[15]

E. Grigorieva, E. Khailov and A. Korobeinikov, An optimal control problem in HIV treatment,, Discrete and Continuous Dynamical Systems, supplement volume (2013), 311.   Google Scholar

[16]

E.V. Grigorieva, E.N. Khailov, N.V. Bondarenko and A. Korobeinikov, Modeling and optimal control for antiretroviral therapy,, Journal of Biological Systems, 22 (2014), 199.   Google Scholar

[17]

E.V. Grigorieva and E.N. Khailov, Optimal vaccination, treatment, and priventive campaigns in regard to the SIR epidemic model,, Mathematical Modelling and Natural Phenomena, 9 (2014), 105.   Google Scholar

[18]

E. Gubar and E. Zhitkova, Decision making procedure in optimal control problem for the SIR model,, Contributions to Game Theory and Management, 6 (2013), 189.   Google Scholar

[19]

K. Hattaf and N. Yousfi, Mathematical model of the influenza A (H1N1) infection,, Advanced Studies in Biology, 1 (2009), 383.   Google Scholar

[20]

H.W. Hethcote, A Thousand and One Epidemic Models, in Frontiers in Theoretical Biology, (ed. S.A. Levin),, Springer-Verlag, (1994), 504.   Google Scholar

[21]

H.W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.   Google Scholar

[22]

M.J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals,, Princeton University Press, (2008).   Google Scholar

[23]

U. Ledzewicz and H. Schättler, On optimal singular controls for a general SIR-model with vaccination and treatment,, Discrete and Continuous Dynamical Systems, supplement volume (2011), 981.   Google Scholar

[24]

E.B. Lee and L. Marcus, Foundations of Optimal Control Theory,, John Wiley & Sons, (1967).   Google Scholar

[25]

M.S. Nikol'skii, On the time-optimality problem for three- and four-dimensional control systems,, Proceedings of the Steklov Institute of Mathematics, 277 (2012), 184.   Google Scholar

[26]

L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, Mathematical Theory of Optimal Processes,, John Wiley & Sons, (1962).   Google Scholar

[27]

G. Sansone, Equazioni Differenziali nel Campo Reale, Parte Prima,, Nicola Zanichelli, (1948).   Google Scholar

[28]

H. Schättler and U. Ledzewicz, Geometric Optimal Control. Theory, Methods and Examples,, Springer, (2012).   Google Scholar

[29]

S.A. Vakhrameev, Bang-bang theorems and related questions,, Proceedings of the Steklov Institute of Mathematics, 220 (1988), 45.   Google Scholar

[30]

F.P. Vasil'ev, Optimization Methods,, Factorial Press, (2002).   Google Scholar

[31]

T.T. Yusuf and F. Benyah, Optimal control of vaccination and treatment for an SIR epidemiological model,, World Journal of Modelling and Simulation, 8 (2012), 194.   Google Scholar

[32]

M.I. Zelikin and V.F. Borisov, Theory of Chattering Control. With Applications to Astronautics, Robotics, Economics, and Engineering,, Birkhäuser, (1994).   Google Scholar

show all references

References:
[1]

M. Alkama, M. Elhia, Z. Rachik, M. Rachik and E. Labriji, Free terminal time optimal control problem of an SIR epidemic model with vaccination,, International Journal of Science and Research, 3 (2014), 227.   Google Scholar

[2]

R.M. Anderson and R.M. May, Infectious Diseases of Humans: Dynamics and Control,, Oxford University Press, (1992).   Google Scholar

[3]

H. Behncke, Optimal control of deterministic epidemics,, Optimal Control Applications and Methods, 21 (2000), 269.   Google Scholar

[4]

F. Brauer, Some simple epidemic models,, Mathematical Biosciences and Engineering, 3 (2006), 1.   Google Scholar

[5]

V. Capasso, Mathematical Structures of Epidemic Systems,, Lecture Notes in Biomathematics, (2008).   Google Scholar

[6]

C. Castilho, Optimal control of an epidemic through educational campaigns,, Electronic Journal of Differential Equations, 2006 (2006), 1.   Google Scholar

[7]

D.J. Daley and J. Gani, Epidemic Modelling: An Introduction,, Cambridge University Press, (1999).   Google Scholar

[8]

O. Diekmann and J.A.P. Heesterbeek, Mathematical Epidemiology of Infectiuos Diseases. Model Building, Analysis and Interpretation,, John Wiley & Sons, (2000).   Google Scholar

[9]

A.V. Dmitruk, A generalized estimate on the number of zeros for solutions of a class of linear differential equations,, SIAM Journal on Control and Optimization, 30 (1992), 1087.   Google Scholar

[10]

M. Elhia, O. Balatif, J. Bouyaghroumni, E. Labriji and M. Rachik, Optimal control applied to the spread of influenza A (H1N1),, Applied Mathematical Sciences, 6 (2012), 4057.   Google Scholar

[11]

H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models,, Mathematical Biosciences and Engineering, 6 (2009), 469.   Google Scholar

[12]

E. Grigorieva, N. Bondarenko, E. Khailov and A. Korobeinikov, Finite-Dimensional Methods for Optimal Control of Autothermal Thermophilic Aerobic Digestion,, in Industrial Waste, (2012), 91.   Google Scholar

[13]

E.V. Grigorieva, E.N. Khailov and A. Korobeinikov, Parametrization of the attainable set for a nonlinear control model of a biochemical process,, Mathematical Biosciences and Engineering, 10 (2013), 1067.   Google Scholar

[14]

E. Grigorieva, E. Khailov and A. Korobeinikov, Optimal control for a susceptible-infected-recovered infectious disease model,, Journal of Coupled Systems and Multiscale Dynamics, 1 (2013), 324.   Google Scholar

[15]

E. Grigorieva, E. Khailov and A. Korobeinikov, An optimal control problem in HIV treatment,, Discrete and Continuous Dynamical Systems, supplement volume (2013), 311.   Google Scholar

[16]

E.V. Grigorieva, E.N. Khailov, N.V. Bondarenko and A. Korobeinikov, Modeling and optimal control for antiretroviral therapy,, Journal of Biological Systems, 22 (2014), 199.   Google Scholar

[17]

E.V. Grigorieva and E.N. Khailov, Optimal vaccination, treatment, and priventive campaigns in regard to the SIR epidemic model,, Mathematical Modelling and Natural Phenomena, 9 (2014), 105.   Google Scholar

[18]

E. Gubar and E. Zhitkova, Decision making procedure in optimal control problem for the SIR model,, Contributions to Game Theory and Management, 6 (2013), 189.   Google Scholar

[19]

K. Hattaf and N. Yousfi, Mathematical model of the influenza A (H1N1) infection,, Advanced Studies in Biology, 1 (2009), 383.   Google Scholar

[20]

H.W. Hethcote, A Thousand and One Epidemic Models, in Frontiers in Theoretical Biology, (ed. S.A. Levin),, Springer-Verlag, (1994), 504.   Google Scholar

[21]

H.W. Hethcote, The mathematics of infectious diseases,, SIAM Review, 42 (2000), 599.   Google Scholar

[22]

M.J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals,, Princeton University Press, (2008).   Google Scholar

[23]

U. Ledzewicz and H. Schättler, On optimal singular controls for a general SIR-model with vaccination and treatment,, Discrete and Continuous Dynamical Systems, supplement volume (2011), 981.   Google Scholar

[24]

E.B. Lee and L. Marcus, Foundations of Optimal Control Theory,, John Wiley & Sons, (1967).   Google Scholar

[25]

M.S. Nikol'skii, On the time-optimality problem for three- and four-dimensional control systems,, Proceedings of the Steklov Institute of Mathematics, 277 (2012), 184.   Google Scholar

[26]

L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, Mathematical Theory of Optimal Processes,, John Wiley & Sons, (1962).   Google Scholar

[27]

G. Sansone, Equazioni Differenziali nel Campo Reale, Parte Prima,, Nicola Zanichelli, (1948).   Google Scholar

[28]

H. Schättler and U. Ledzewicz, Geometric Optimal Control. Theory, Methods and Examples,, Springer, (2012).   Google Scholar

[29]

S.A. Vakhrameev, Bang-bang theorems and related questions,, Proceedings of the Steklov Institute of Mathematics, 220 (1988), 45.   Google Scholar

[30]

F.P. Vasil'ev, Optimization Methods,, Factorial Press, (2002).   Google Scholar

[31]

T.T. Yusuf and F. Benyah, Optimal control of vaccination and treatment for an SIR epidemiological model,, World Journal of Modelling and Simulation, 8 (2012), 194.   Google Scholar

[32]

M.I. Zelikin and V.F. Borisov, Theory of Chattering Control. With Applications to Astronautics, Robotics, Economics, and Engineering,, Birkhäuser, (1994).   Google Scholar

[1]

Peng Luo. Comparison theorem for diagonally quadratic BSDEs. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020374

[2]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[3]

Bernard Bonnard, Jérémy Rouot. Geometric optimal techniques to control the muscular force response to functional electrical stimulation using a non-isometric force-fatigue model. Journal of Geometric Mechanics, 2020  doi: 10.3934/jgm.2020032

[4]

Yangrong Li, Shuang Yang, Qiangheng Zhang. Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28 (4) : 1529-1544. doi: 10.3934/era.2020080

[5]

Lin Shi, Xuemin Wang, Dingshi Li. Limiting behavior of non-autonomous stochastic reaction-diffusion equations with colored noise on unbounded thin domains. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5367-5386. doi: 10.3934/cpaa.2020242

[6]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[7]

Hong Niu, Zhijiang Feng, Qijin Xiao, Yajun Zhang. A PID control method based on optimal control strategy. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 117-126. doi: 10.3934/naco.2020019

[8]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[9]

Wenqiang Zhao, Yijin Zhang. High-order Wong-Zakai approximations for non-autonomous stochastic $ p $-Laplacian equations on $ \mathbb{R}^N $. Communications on Pure & Applied Analysis, 2021, 20 (1) : 243-280. doi: 10.3934/cpaa.2020265

[10]

Youming Guo, Tingting Li. Optimal control strategies for an online game addiction model with low and high risk exposure. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020347

[11]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[12]

Zuliang Lu, Fei Huang, Xiankui Wu, Lin Li, Shang Liu. Convergence and quasi-optimality of $ L^2- $norms based an adaptive finite element method for nonlinear optimal control problems. Electronic Research Archive, 2020, 28 (4) : 1459-1486. doi: 10.3934/era.2020077

[13]

Hui Lv, Xing'an Wang. Dissipative control for uncertain singular markovian jump systems via hybrid impulsive control. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 127-142. doi: 10.3934/naco.2020020

[14]

Lars Grüne, Matthias A. Müller, Christopher M. Kellett, Steven R. Weller. Strict dissipativity for discrete time discounted optimal control problems. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020046

[15]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[16]

Yolanda Guerrero–Sánchez, Muhammad Umar, Zulqurnain Sabir, Juan L. G. Guirao, Muhammad Asif Zahoor Raja. Solving a class of biological HIV infection model of latently infected cells using heuristic approach. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020431

[17]

A. M. Elaiw, N. H. AlShamrani, A. Abdel-Aty, H. Dutta. Stability analysis of a general HIV dynamics model with multi-stages of infected cells and two routes of infection. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020441

[18]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[19]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[20]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

 Impact Factor: 

Metrics

  • PDF downloads (144)
  • HTML views (0)
  • Cited by (0)

[Back to Top]