[1]

M. Alkama, M. Elhia, Z. Rachik, M. Rachik and E. Labriji, Free terminal time optimal control problem of an SIR epidemic model with vaccination, International Journal of Science and Research, 3, N 5, (2014), 227230.

[2]

R.M. Anderson and R.M. May, Infectious Diseases of Humans: Dynamics and Control, Oxford University Press, Oxford, UK, 1992.

[3]

H. Behncke, Optimal control of deterministic epidemics, Optimal Control Applications and Methods, 21, N 6, (2000), 269285.

[4]

F. Brauer, Some simple epidemic models, Mathematical Biosciences and Engineering, 3, N 1, (2006), 115.

[5]

V. Capasso, Mathematical Structures of Epidemic Systems, Lecture Notes in Biomathematics, vol. 97, Springer, Heidelberg, 2008.

[6]

C. Castilho, Optimal control of an epidemic through educational campaigns, Electronic Journal of Differential Equations, 2006, N 125, (2006), 111.

[7]

D.J. Daley and J. Gani, Epidemic Modelling: An Introduction, Cambridge University Press, Cambridge, 1999.

[8]

O. Diekmann and J.A.P. Heesterbeek, Mathematical Epidemiology of Infectiuos Diseases. Model Building, Analysis and Interpretation, John Wiley & Sons, New York, 2000.

[9]

A.V. Dmitruk, A generalized estimate on the number of zeros for solutions of a class of linear differential equations, SIAM Journal on Control and Optimization, 30, N 5, (1992), 10871091.

[10]

M. Elhia, O. Balatif, J. Bouyaghroumni, E. Labriji and M. Rachik, Optimal control applied to the spread of influenza A (H1N1), Applied Mathematical Sciences, 6, N 82, (2012), 40574065.

[11]

H. Gaff and E. Schaefer, Optimal control applied to vaccination and treatment strategies for various epidemiological models, Mathematical Biosciences and Engineering, 6, N 3, (2009), 469492.

[12]

E. Grigorieva, N. Bondarenko, E. Khailov and A. Korobeinikov, FiniteDimensional Methods for Optimal Control of Autothermal Thermophilic Aerobic Digestion, in Industrial Waste, (eds. K.Y. Show and X. Guo), InTech, Croatia, (2012), 91120.

[13]

E.V. Grigorieva, E.N. Khailov and A. Korobeinikov, Parametrization of the attainable set for a nonlinear control model of a biochemical process, Mathematical Biosciences and Engineering, 10, N 4, (2013), 10671094.

[14]

E. Grigorieva, E. Khailov and A. Korobeinikov, Optimal control for a susceptibleinfectedrecovered infectious disease model, Journal of Coupled Systems and Multiscale Dynamics, 1, N 3, (2013), 324331.

[15]

E. Grigorieva, E. Khailov and A. Korobeinikov, An optimal control problem in HIV treatment, Discrete and Continuous Dynamical Systems, supplement volume, (2013), 311322.

[16]

E.V. Grigorieva, E.N. Khailov, N.V. Bondarenko and A. Korobeinikov, Modeling and optimal control for antiretroviral therapy, Journal of Biological Systems, 22, N 2, (2014), 199217.

[17]

E.V. Grigorieva and E.N. Khailov, Optimal vaccination, treatment, and priventive campaigns in regard to the SIR epidemic model, Mathematical Modelling and Natural Phenomena, 9, N 4, (2014), 105121.

[18]

E. Gubar and E. Zhitkova, Decision making procedure in optimal control problem for the SIR model, Contributions to Game Theory and Management, 6, (2013), 189199.

[19]

K. Hattaf and N. Yousfi, Mathematical model of the influenza A (H1N1) infection, Advanced Studies in Biology, 1, N 8, (2009), 383390.

[20]

H.W. Hethcote, A Thousand and One Epidemic Models, in Frontiers in Theoretical Biology, (ed. S.A. Levin), SpringerVerlag, BerlinHeidelbergNew YorkLondon, (1994), 504515.

[21]

H.W. Hethcote, The mathematics of infectious diseases, SIAM Review, 42, N 4, (2000), 599653.

[22]

M.J. Keeling and P. Rohani, Modeling Infectious Diseases in Humans and Animals, Princeton University Press, Princeton, 2008.

[23]

U. Ledzewicz and H. Schättler, On optimal singular controls for a general SIRmodel with vaccination and treatment, Discrete and Continuous Dynamical Systems, supplement volume, (2011), 981990.

[24]

E.B. Lee and L. Marcus, Foundations of Optimal Control Theory, John Wiley & Sons, New York, 1967.

[25]

M.S. Nikol'skii, On the timeoptimality problem for three and fourdimensional control systems, Proceedings of the Steklov Institute of Mathematics, 277, (2012), 184190.

[26]

L.S. Pontryagin, V.G. Boltyanskii, R.V. Gamkrelidze and E.F. Mishchenko, Mathematical Theory of Optimal Processes, John Wiley & Sons, New York, 1962.

[27]

G. Sansone, Equazioni Differenziali nel Campo Reale, Parte Prima, Nicola Zanichelli, Bologna, 1948.

[28]

H. Schättler and U. Ledzewicz, Geometric Optimal Control. Theory, Methods and Examples, Springer, New YorkHeidelbergDordrechtLondon, 2012.

[29]

S.A. Vakhrameev, Bangbang theorems and related questions, Proceedings of the Steklov Institute of Mathematics, 220, (1988), 45108.

[30]

F.P. Vasil'ev, Optimization Methods, Factorial Press, Moscow, 2002.

[31]

T.T. Yusuf and F. Benyah, Optimal control of vaccination and treatment for an SIR epidemiological model, World Journal of Modelling and Simulation, 8, N 3, (2012), 194204.

[32]

M.I. Zelikin and V.F. Borisov, Theory of Chattering Control. With Applications to Astronautics, Robotics, Economics, and Engineering, Birkhäuser, Boston, MA, 1994.
