[1]
|
R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler method for state-constrained differential inclusions, SIAM J. Optim., 18 (2007), 1004-1026.
|
[2]
|
P. Bettiol, A. Bressan, R. Vinter, Trajectories Satisfying a State Constraint: $W^{(1,1)}$ Estimates and Counterexamples, SIAM J. Control Optim., 48 (2010), 4664-4679.
|
[3]
|
N. Bonneuil, Computing reachable sets as capture-viability kernels in reverse time, Applied Mathematics, 3 (2012), 1593-1597.
|
[4]
|
F. Forcellini and F. Rampazzo, On non-convex differential inclusions whose state is constrained in the closure of an open set, J.Differential Integral Equations, 12 (1999), 471-497.
|
[5]
|
H. Frankowska and R. B. Vinter, Existence of neighboring feasible trajectories: applications to dynamic programming for state-constrained optimal control problems, J. Optim. Theory Appl., 104 (2000), 21-40.
|
[6]
|
S. V. Grigor'eva, V. Y. Pakhotinskikh, A. A. Uspenskii and V. N. Ushakov, Construction of solutions in certain differential games with phase constraints, Sbornik Mathematics, 196 (2005), 513-539.
|
[7]
|
M. I. Gusev, On external estimates for reachable sets of nonlinear control systems, Proceedings of the Steklov Institute of Mathematics, 275, Suppl.1 (2011), 57-67.
|
[8]
|
M. I. Gusev, External estimates of the reachability sets of nonlinear controlled systems, Automation and Remote Control, 73 (2012), 450-461.
|
[9]
|
M. I. Gusev, Internal approximations of reachable sets of control systems with state constraints, Proceedings of the Steklov Institute of Mathematics 287 (2014), 77-92.
|
[10]
|
A. D. Ioffe and V. M. Tikhomirov, "Theory of Extremal Problems", Studies in Mathematics and its Applications, Amsterdam : North-Holland, 1979.
|
[11]
|
E. K. Kostousova, On polyhedral estimates for reachable sets of multistep systems with bilinear uncertainty, Automation and Remote Control, 72 (2011), 1841-1851.
|
[12]
|
A. B. Kurzhanski and T. F. Filippova, Description of the pencil of viable trajectories of a control system(Russian), Differentsial'nye Uravneniya, 23 (1987), 1303-1315.
|
[13]
|
A. B. Kurzhanski, I. M. Mitchell and P. Varaiya, Optimization techniques for state-constrained control and obstacle problems, J. Optim. Theory Appl., 128 (2006), 499-521.
|
[14]
|
A. B. Kurzhanski and I. Valyi, "Ellipsoidal Calculus for Estimation and Control", SCFA. Boston: Birkhäuser, 1997.
|
[15]
|
E. B. Lee and L. Markus, "Foundations of Optimal Control Theory", New York: Wiley, 1967.
|
[16]
|
F. Lempio and V. M. Veliov, Discrete approximations of differential inclusions, GAMM Mitt. Ges. Angew. Math. Mech., 21 (1998), 103-135
|
[17]
|
A.V. Lotov, A numerical method for constructing sets of attainability for linear controlled systems with phase constraints (Russian), Z. Vycisl. Mat. i Mat. Fiz, 15 (1975), 67-78.
|
[18]
|
E. D. Sontag, A 'universal' construction of Artstein's theorem on nonlinear stabilization, System and Control Letters, 13 (1989), 117-123.
|
[19]
|
R. J. Stern, Characterization of the State Constrained Minimal Time Function, SIAM J. Control and Optim. 43 (2004), 697-707.
|