2015, 2015(special): 579-587. doi: 10.3934/proc.2015.0579

On reachability analysis for nonlinear control systems with state constraints

1. 

N.N.Krasovskii Institute of Mathematics and Mechanics, S.Kovalevskaya str., 16, 620099, Ekaterinburg, Russian Federation

Received  September 2014 Revised  February 2015 Published  November 2015

The paper is devoted to the problem of approximating reachable sets of a nonlinear control system with state constraints given as a solution set for a nonlinear inequality. A procedure to remove state constraints is proposed; this procedure consists in replacing a primary system by an auxiliary system without state constraints. The equations of the auxiliary system depend on a small parameter. It is shown that a reachable set of the primary system may be approximated in the Hausdorff metric by reachable sets of the auxiliary system when the small parameter tends to zero. The estimates of the rate of convergence are given.
Citation: Mikhail Gusev. On reachability analysis for nonlinear control systems with state constraints. Conference Publications, 2015, 2015 (special) : 579-587. doi: 10.3934/proc.2015.0579
References:
[1]

R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler method for state-constrained differential inclusions,, SIAM J. Optim., 18 (2007), 1004.   Google Scholar

[2]

P. Bettiol, A. Bressan, R. Vinter, Trajectories Satisfying a State Constraint: $W^{(1,1)}$ Estimates and Counterexamples,, SIAM J. Control Optim., 48 (2010), 4664.   Google Scholar

[3]

N. Bonneuil, Computing reachable sets as capture-viability kernels in reverse time,, Applied Mathematics, 3 (2012), 1593.   Google Scholar

[4]

F. Forcellini and F. Rampazzo, On non-convex differential inclusions whose state is constrained in the closure of an open set,, J.Differential Integral Equations, 12 (1999), 471.   Google Scholar

[5]

H. Frankowska and R. B. Vinter, Existence of neighboring feasible trajectories: applications to dynamic programming for state-constrained optimal control problems,, J. Optim. Theory Appl., 104 (2000), 21.   Google Scholar

[6]

S. V. Grigor'eva, V. Y. Pakhotinskikh, A. A. Uspenskii and V. N. Ushakov, Construction of solutions in certain differential games with phase constraints,, Sbornik Mathematics, 196 (2005), 513.   Google Scholar

[7]

M. I. Gusev, On external estimates for reachable sets of nonlinear control systems,, Proceedings of the Steklov Institute of Mathematics, 275 (2011), 57.   Google Scholar

[8]

M. I. Gusev, External estimates of the reachability sets of nonlinear controlled systems,, Automation and Remote Control, 73 (2012), 450.   Google Scholar

[9]

M. I. Gusev, Internal approximations of reachable sets of control systems with state constraints,, Proceedings of the Steklov Institute of Mathematics 287 (2014), 287 (2014), 77.   Google Scholar

[10]

A. D. Ioffe and V. M. Tikhomirov, "Theory of Extremal Problems",, Studies in Mathematics and its Applications, (1979).   Google Scholar

[11]

E. K. Kostousova, On polyhedral estimates for reachable sets of multistep systems with bilinear uncertainty,, Automation and Remote Control, 72 (2011), 1841.   Google Scholar

[12]

A. B. Kurzhanski and T. F. Filippova, Description of the pencil of viable trajectories of a control system(Russian),, Differentsial'nye Uravneniya, 23 (1987), 1303.   Google Scholar

[13]

A. B. Kurzhanski, I. M. Mitchell and P. Varaiya, Optimization techniques for state-constrained control and obstacle problems,, J. Optim. Theory Appl., 128 (2006), 499.   Google Scholar

[14]

A. B. Kurzhanski and I. Valyi, "Ellipsoidal Calculus for Estimation and Control",, SCFA. Boston: Birkhäuser, (1997).   Google Scholar

[15]

E. B. Lee and L. Markus, "Foundations of Optimal Control Theory",, New York: Wiley, (1967).   Google Scholar

[16]

F. Lempio and V. M. Veliov, Discrete approximations of differential inclusions,, GAMM Mitt. Ges. Angew. Math. Mech., 21 (1998), 103.   Google Scholar

[17]

A.V. Lotov, A numerical method for constructing sets of attainability for linear controlled systems with phase constraints (Russian),, Z. Vycisl. Mat. i Mat. Fiz, 15 (1975), 67.   Google Scholar

[18]

E. D. Sontag, A 'universal' construction of Artstein's theorem on nonlinear stabilization,, System and Control Letters, 13 (1989), 117.   Google Scholar

[19]

R. J. Stern, Characterization of the State Constrained Minimal Time Function,, SIAM J. Control and Optim. 43 (2004), 43 (2004), 697.   Google Scholar

show all references

References:
[1]

R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler method for state-constrained differential inclusions,, SIAM J. Optim., 18 (2007), 1004.   Google Scholar

[2]

P. Bettiol, A. Bressan, R. Vinter, Trajectories Satisfying a State Constraint: $W^{(1,1)}$ Estimates and Counterexamples,, SIAM J. Control Optim., 48 (2010), 4664.   Google Scholar

[3]

N. Bonneuil, Computing reachable sets as capture-viability kernels in reverse time,, Applied Mathematics, 3 (2012), 1593.   Google Scholar

[4]

F. Forcellini and F. Rampazzo, On non-convex differential inclusions whose state is constrained in the closure of an open set,, J.Differential Integral Equations, 12 (1999), 471.   Google Scholar

[5]

H. Frankowska and R. B. Vinter, Existence of neighboring feasible trajectories: applications to dynamic programming for state-constrained optimal control problems,, J. Optim. Theory Appl., 104 (2000), 21.   Google Scholar

[6]

S. V. Grigor'eva, V. Y. Pakhotinskikh, A. A. Uspenskii and V. N. Ushakov, Construction of solutions in certain differential games with phase constraints,, Sbornik Mathematics, 196 (2005), 513.   Google Scholar

[7]

M. I. Gusev, On external estimates for reachable sets of nonlinear control systems,, Proceedings of the Steklov Institute of Mathematics, 275 (2011), 57.   Google Scholar

[8]

M. I. Gusev, External estimates of the reachability sets of nonlinear controlled systems,, Automation and Remote Control, 73 (2012), 450.   Google Scholar

[9]

M. I. Gusev, Internal approximations of reachable sets of control systems with state constraints,, Proceedings of the Steklov Institute of Mathematics 287 (2014), 287 (2014), 77.   Google Scholar

[10]

A. D. Ioffe and V. M. Tikhomirov, "Theory of Extremal Problems",, Studies in Mathematics and its Applications, (1979).   Google Scholar

[11]

E. K. Kostousova, On polyhedral estimates for reachable sets of multistep systems with bilinear uncertainty,, Automation and Remote Control, 72 (2011), 1841.   Google Scholar

[12]

A. B. Kurzhanski and T. F. Filippova, Description of the pencil of viable trajectories of a control system(Russian),, Differentsial'nye Uravneniya, 23 (1987), 1303.   Google Scholar

[13]

A. B. Kurzhanski, I. M. Mitchell and P. Varaiya, Optimization techniques for state-constrained control and obstacle problems,, J. Optim. Theory Appl., 128 (2006), 499.   Google Scholar

[14]

A. B. Kurzhanski and I. Valyi, "Ellipsoidal Calculus for Estimation and Control",, SCFA. Boston: Birkhäuser, (1997).   Google Scholar

[15]

E. B. Lee and L. Markus, "Foundations of Optimal Control Theory",, New York: Wiley, (1967).   Google Scholar

[16]

F. Lempio and V. M. Veliov, Discrete approximations of differential inclusions,, GAMM Mitt. Ges. Angew. Math. Mech., 21 (1998), 103.   Google Scholar

[17]

A.V. Lotov, A numerical method for constructing sets of attainability for linear controlled systems with phase constraints (Russian),, Z. Vycisl. Mat. i Mat. Fiz, 15 (1975), 67.   Google Scholar

[18]

E. D. Sontag, A 'universal' construction of Artstein's theorem on nonlinear stabilization,, System and Control Letters, 13 (1989), 117.   Google Scholar

[19]

R. J. Stern, Characterization of the State Constrained Minimal Time Function,, SIAM J. Control and Optim. 43 (2004), 43 (2004), 697.   Google Scholar

[1]

Yifan Chen, Thomas Y. Hou. Function approximation via the subsampled Poincaré inequality. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 169-199. doi: 10.3934/dcds.2020296

[2]

Stefan Doboszczak, Manil T. Mohan, Sivaguru S. Sritharan. Pontryagin maximum principle for the optimal control of linearized compressible navier-stokes equations with state constraints. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020110

[3]

Lingfeng Li, Shousheng Luo, Xue-Cheng Tai, Jiang Yang. A new variational approach based on level-set function for convex hull problem with outliers. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020070

[4]

Wolfgang Riedl, Robert Baier, Matthias Gerdts. Optimization-based subdivision algorithm for reachable sets. Journal of Computational Dynamics, 2021, 8 (1) : 99-130. doi: 10.3934/jcd.2021005

[5]

Xuemei Chen, Julia Dobrosotskaya. Inpainting via sparse recovery with directional constraints. Mathematical Foundations of Computing, 2020, 3 (4) : 229-247. doi: 10.3934/mfc.2020025

[6]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[7]

Mostafa Mbekhta. Representation and approximation of the polar factor of an operator on a Hilbert space. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020463

[8]

Huu-Quang Nguyen, Ya-Chi Chu, Ruey-Lin Sheu. On the convexity for the range set of two quadratic functions. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020169

[9]

Manuel Friedrich, Martin Kružík, Jan Valdman. Numerical approximation of von Kármán viscoelastic plates. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 299-319. doi: 10.3934/dcdss.2020322

[10]

Wei Ouyang, Li Li. Hölder strong metric subregularity and its applications to convergence analysis of inexact Newton methods. Journal of Industrial & Management Optimization, 2021, 17 (1) : 169-184. doi: 10.3934/jimo.2019105

[11]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

[12]

Liping Tang, Ying Gao. Some properties of nonconvex oriented distance function and applications to vector optimization problems. Journal of Industrial & Management Optimization, 2021, 17 (1) : 485-500. doi: 10.3934/jimo.2020117

[13]

Yasmine Cherfaoui, Mustapha Moulaï. Biobjective optimization over the efficient set of multiobjective integer programming problem. Journal of Industrial & Management Optimization, 2021, 17 (1) : 117-131. doi: 10.3934/jimo.2019102

[14]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[15]

Guangbin CAI, Yang Zhao, Wanzhen Quan, Xiusheng Zhang. Design of LPV fault-tolerant controller for hypersonic vehicle based on state observer. Journal of Industrial & Management Optimization, 2021, 17 (1) : 447-465. doi: 10.3934/jimo.2019120

[16]

Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Deep quench approximation and optimal control of general Cahn–Hilliard systems with fractional operators and double obstacle potentials. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 243-271. doi: 10.3934/dcdss.2020213

[17]

Mohammed Abdulrazaq Kahya, Suhaib Abduljabbar Altamir, Zakariya Yahya Algamal. Improving whale optimization algorithm for feature selection with a time-varying transfer function. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 87-98. doi: 10.3934/naco.2020017

[18]

Shasha Hu, Yihong Xu, Yuhan Zhang. Second-Order characterizations for set-valued equilibrium problems with variable ordering structures. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020164

[19]

Wenbin Li, Jianliang Qian. Simultaneously recovering both domain and varying density in inverse gravimetry by efficient level-set methods. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020073

[20]

Yuanfen Xiao. Mean Li-Yorke chaotic set along polynomial sequence with full Hausdorff dimension for $ \beta $-transformation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 525-536. doi: 10.3934/dcds.2020267

 Impact Factor: 

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]