[1]

R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler method for stateconstrained differential inclusions, SIAM J. Optim., 18 (2007), 10041026.

[2]

P. Bettiol, A. Bressan, R. Vinter, Trajectories Satisfying a State Constraint: $W^{(1,1)}$ Estimates and Counterexamples, SIAM J. Control Optim., 48 (2010), 46644679.

[3]

N. Bonneuil, Computing reachable sets as captureviability kernels in reverse time, Applied Mathematics, 3 (2012), 15931597.

[4]

F. Forcellini and F. Rampazzo, On nonconvex differential inclusions whose state is constrained in the closure of an open set, J.Differential Integral Equations, 12 (1999), 471497.

[5]

H. Frankowska and R. B. Vinter, Existence of neighboring feasible trajectories: applications to dynamic programming for stateconstrained optimal control problems, J. Optim. Theory Appl., 104 (2000), 2140.

[6]

S. V. Grigor'eva, V. Y. Pakhotinskikh, A. A. Uspenskii and V. N. Ushakov, Construction of solutions in certain differential games with phase constraints, Sbornik Mathematics, 196 (2005), 513539.

[7]

M. I. Gusev, On external estimates for reachable sets of nonlinear control systems, Proceedings of the Steklov Institute of Mathematics, 275, Suppl.1 (2011), 5767.

[8]

M. I. Gusev, External estimates of the reachability sets of nonlinear controlled systems, Automation and Remote Control, 73 (2012), 450461.

[9]

M. I. Gusev, Internal approximations of reachable sets of control systems with state constraints, Proceedings of the Steklov Institute of Mathematics 287 (2014), 7792.

[10]

A. D. Ioffe and V. M. Tikhomirov, "Theory of Extremal Problems", Studies in Mathematics and its Applications, Amsterdam : NorthHolland, 1979.

[11]

E. K. Kostousova, On polyhedral estimates for reachable sets of multistep systems with bilinear uncertainty, Automation and Remote Control, 72 (2011), 18411851.

[12]

A. B. Kurzhanski and T. F. Filippova, Description of the pencil of viable trajectories of a control system(Russian), Differentsial'nye Uravneniya, 23 (1987), 13031315.

[13]

A. B. Kurzhanski, I. M. Mitchell and P. Varaiya, Optimization techniques for stateconstrained control and obstacle problems, J. Optim. Theory Appl., 128 (2006), 499521.

[14]

A. B. Kurzhanski and I. Valyi, "Ellipsoidal Calculus for Estimation and Control", SCFA. Boston: Birkhäuser, 1997.

[15]

E. B. Lee and L. Markus, "Foundations of Optimal Control Theory", New York: Wiley, 1967.

[16]

F. Lempio and V. M. Veliov, Discrete approximations of differential inclusions, GAMM Mitt. Ges. Angew. Math. Mech., 21 (1998), 103135

[17]

A.V. Lotov, A numerical method for constructing sets of attainability for linear controlled systems with phase constraints (Russian), Z. Vycisl. Mat. i Mat. Fiz, 15 (1975), 6778.

[18]

E. D. Sontag, A 'universal' construction of Artstein's theorem on nonlinear stabilization, System and Control Letters, 13 (1989), 117123.

[19]

R. J. Stern, Characterization of the State Constrained Minimal Time Function, SIAM J. Control and Optim. 43 (2004), 697707.
