
Previous Article
Noncontrollability for the ColemannGurtin model in several dimensions
 PROC Home
 This Issue

Next Article
Modeling HIV: Determining the factors affecting the racial disparity in the prevalence of infected women
On reachability analysis for nonlinear control systems with state constraints
1.  N.N.Krasovskii Institute of Mathematics and Mechanics, S.Kovalevskaya str., 16, 620099, Ekaterinburg, Russian Federation 
References:
[1] 
R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler method for stateconstrained differential inclusions,, SIAM J. Optim., 18 (2007), 1004. Google Scholar 
[2] 
P. Bettiol, A. Bressan, R. Vinter, Trajectories Satisfying a State Constraint: $W^{(1,1)}$ Estimates and Counterexamples,, SIAM J. Control Optim., 48 (2010), 4664. Google Scholar 
[3] 
N. Bonneuil, Computing reachable sets as captureviability kernels in reverse time,, Applied Mathematics, 3 (2012), 1593. Google Scholar 
[4] 
F. Forcellini and F. Rampazzo, On nonconvex differential inclusions whose state is constrained in the closure of an open set,, J.Differential Integral Equations, 12 (1999), 471. Google Scholar 
[5] 
H. Frankowska and R. B. Vinter, Existence of neighboring feasible trajectories: applications to dynamic programming for stateconstrained optimal control problems,, J. Optim. Theory Appl., 104 (2000), 21. Google Scholar 
[6] 
S. V. Grigor'eva, V. Y. Pakhotinskikh, A. A. Uspenskii and V. N. Ushakov, Construction of solutions in certain differential games with phase constraints,, Sbornik Mathematics, 196 (2005), 513. Google Scholar 
[7] 
M. I. Gusev, On external estimates for reachable sets of nonlinear control systems,, Proceedings of the Steklov Institute of Mathematics, 275 (2011), 57. Google Scholar 
[8] 
M. I. Gusev, External estimates of the reachability sets of nonlinear controlled systems,, Automation and Remote Control, 73 (2012), 450. Google Scholar 
[9] 
M. I. Gusev, Internal approximations of reachable sets of control systems with state constraints,, Proceedings of the Steklov Institute of Mathematics 287 (2014), 287 (2014), 77. Google Scholar 
[10] 
A. D. Ioffe and V. M. Tikhomirov, "Theory of Extremal Problems",, Studies in Mathematics and its Applications, (1979). Google Scholar 
[11] 
E. K. Kostousova, On polyhedral estimates for reachable sets of multistep systems with bilinear uncertainty,, Automation and Remote Control, 72 (2011), 1841. Google Scholar 
[12] 
A. B. Kurzhanski and T. F. Filippova, Description of the pencil of viable trajectories of a control system(Russian),, Differentsial'nye Uravneniya, 23 (1987), 1303. Google Scholar 
[13] 
A. B. Kurzhanski, I. M. Mitchell and P. Varaiya, Optimization techniques for stateconstrained control and obstacle problems,, J. Optim. Theory Appl., 128 (2006), 499. Google Scholar 
[14] 
A. B. Kurzhanski and I. Valyi, "Ellipsoidal Calculus for Estimation and Control",, SCFA. Boston: Birkhäuser, (1997). Google Scholar 
[15] 
E. B. Lee and L. Markus, "Foundations of Optimal Control Theory",, New York: Wiley, (1967). Google Scholar 
[16] 
F. Lempio and V. M. Veliov, Discrete approximations of differential inclusions,, GAMM Mitt. Ges. Angew. Math. Mech., 21 (1998), 103. Google Scholar 
[17] 
A.V. Lotov, A numerical method for constructing sets of attainability for linear controlled systems with phase constraints (Russian),, Z. Vycisl. Mat. i Mat. Fiz, 15 (1975), 67. Google Scholar 
[18] 
E. D. Sontag, A 'universal' construction of Artstein's theorem on nonlinear stabilization,, System and Control Letters, 13 (1989), 117. Google Scholar 
[19] 
R. J. Stern, Characterization of the State Constrained Minimal Time Function,, SIAM J. Control and Optim. 43 (2004), 43 (2004), 697. Google Scholar 
show all references
References:
[1] 
R. Baier, I. A. Chahma and F. Lempio, Stability and convergence of Euler method for stateconstrained differential inclusions,, SIAM J. Optim., 18 (2007), 1004. Google Scholar 
[2] 
P. Bettiol, A. Bressan, R. Vinter, Trajectories Satisfying a State Constraint: $W^{(1,1)}$ Estimates and Counterexamples,, SIAM J. Control Optim., 48 (2010), 4664. Google Scholar 
[3] 
N. Bonneuil, Computing reachable sets as captureviability kernels in reverse time,, Applied Mathematics, 3 (2012), 1593. Google Scholar 
[4] 
F. Forcellini and F. Rampazzo, On nonconvex differential inclusions whose state is constrained in the closure of an open set,, J.Differential Integral Equations, 12 (1999), 471. Google Scholar 
[5] 
H. Frankowska and R. B. Vinter, Existence of neighboring feasible trajectories: applications to dynamic programming for stateconstrained optimal control problems,, J. Optim. Theory Appl., 104 (2000), 21. Google Scholar 
[6] 
S. V. Grigor'eva, V. Y. Pakhotinskikh, A. A. Uspenskii and V. N. Ushakov, Construction of solutions in certain differential games with phase constraints,, Sbornik Mathematics, 196 (2005), 513. Google Scholar 
[7] 
M. I. Gusev, On external estimates for reachable sets of nonlinear control systems,, Proceedings of the Steklov Institute of Mathematics, 275 (2011), 57. Google Scholar 
[8] 
M. I. Gusev, External estimates of the reachability sets of nonlinear controlled systems,, Automation and Remote Control, 73 (2012), 450. Google Scholar 
[9] 
M. I. Gusev, Internal approximations of reachable sets of control systems with state constraints,, Proceedings of the Steklov Institute of Mathematics 287 (2014), 287 (2014), 77. Google Scholar 
[10] 
A. D. Ioffe and V. M. Tikhomirov, "Theory of Extremal Problems",, Studies in Mathematics and its Applications, (1979). Google Scholar 
[11] 
E. K. Kostousova, On polyhedral estimates for reachable sets of multistep systems with bilinear uncertainty,, Automation and Remote Control, 72 (2011), 1841. Google Scholar 
[12] 
A. B. Kurzhanski and T. F. Filippova, Description of the pencil of viable trajectories of a control system(Russian),, Differentsial'nye Uravneniya, 23 (1987), 1303. Google Scholar 
[13] 
A. B. Kurzhanski, I. M. Mitchell and P. Varaiya, Optimization techniques for stateconstrained control and obstacle problems,, J. Optim. Theory Appl., 128 (2006), 499. Google Scholar 
[14] 
A. B. Kurzhanski and I. Valyi, "Ellipsoidal Calculus for Estimation and Control",, SCFA. Boston: Birkhäuser, (1997). Google Scholar 
[15] 
E. B. Lee and L. Markus, "Foundations of Optimal Control Theory",, New York: Wiley, (1967). Google Scholar 
[16] 
F. Lempio and V. M. Veliov, Discrete approximations of differential inclusions,, GAMM Mitt. Ges. Angew. Math. Mech., 21 (1998), 103. Google Scholar 
[17] 
A.V. Lotov, A numerical method for constructing sets of attainability for linear controlled systems with phase constraints (Russian),, Z. Vycisl. Mat. i Mat. Fiz, 15 (1975), 67. Google Scholar 
[18] 
E. D. Sontag, A 'universal' construction of Artstein's theorem on nonlinear stabilization,, System and Control Letters, 13 (1989), 117. Google Scholar 
[19] 
R. J. Stern, Characterization of the State Constrained Minimal Time Function,, SIAM J. Control and Optim. 43 (2004), 43 (2004), 697. Google Scholar 
[1] 
Jianling Li, Chunting Lu, Youfang Zeng. A smooth QPfree algorithm without a penalty function or a filter for mathematical programs with complementarity constraints. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 115126. doi: 10.3934/naco.2015.5.115 
[2] 
Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial & Management Optimization, 2005, 1 (4) : 533547. doi: 10.3934/jimo.2005.1.533 
[3] 
Robert Baier, Matthias Gerdts, Ilaria Xausa. Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 519548. doi: 10.3934/naco.2013.3.519 
[4] 
Shay Kels, Nira Dyn. Bernsteintype approximation of setvalued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems  A, 2014, 34 (3) : 10411060. doi: 10.3934/dcds.2014.34.1041 
[5] 
Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 00. doi: 10.3934/dcdss.2020109 
[6] 
Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems  B, 2003, 3 (3) : 361382. doi: 10.3934/dcdsb.2003.3.361 
[7] 
Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial & Management Optimization, 2007, 3 (2) : 381398. doi: 10.3934/jimo.2007.3.381 
[8] 
Ugo Bessi. The stochastic value function in metric measure spaces. Discrete & Continuous Dynamical Systems  A, 2017, 37 (4) : 18191839. doi: 10.3934/dcds.2017076 
[9] 
Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order HamiltonJacobiBellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems  A, 2015, 35 (9) : 39333964. doi: 10.3934/dcds.2015.35.3933 
[10] 
X. X. Huang, D. Li, Xiaoqi Yang. Convergence of optimal values of quadratic penalty problems for mathematical programs with complementarity constraints. Journal of Industrial & Management Optimization, 2006, 2 (3) : 287296. doi: 10.3934/jimo.2006.2.287 
[11] 
Cheng Ma, Xun Li, KaFai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semiinfinite programming problems. Journal of Industrial & Management Optimization, 2012, 8 (3) : 705726. doi: 10.3934/jimo.2012.8.705 
[12] 
Zhiqing Meng, Qiying Hu, Chuangyin Dang. A penalty function algorithm with objective parameters for nonlinear mathematical programming. Journal of Industrial & Management Optimization, 2009, 5 (3) : 585601. doi: 10.3934/jimo.2009.5.585 
[13] 
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895910. doi: 10.3934/jimo.2010.6.895 
[14] 
Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations & Control Theory, 2013, 2 (1) : 173192. doi: 10.3934/eect.2013.2.173 
[15] 
JeanFrançois Babadjian, Clément Mifsud, Nicolas Seguin. Relaxation approximation of Friedrichs' systems under convex constraints. Networks & Heterogeneous Media, 2016, 11 (2) : 223237. doi: 10.3934/nhm.2016.11.223 
[16] 
M. Arisawa, P.L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete & Continuous Dynamical Systems  A, 1996, 2 (3) : 297305. doi: 10.3934/dcds.1996.2.297 
[17] 
Thomas Lorenz. Partial differential inclusions of transport type with state constraints. Discrete & Continuous Dynamical Systems  B, 2019, 24 (3) : 13091340. doi: 10.3934/dcdsb.2019018 
[18] 
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485491. doi: 10.3934/jimo.2012.8.485 
[19] 
Sanyi Tang, Wenhong Pang. On the continuity of the function describing the times of meeting impulsive set and its application. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 13991406. doi: 10.3934/mbe.2017072 
[20] 
S. Kanagawa, K. Inoue, A. Arimoto, Y. Saisho. Mean square approximation of multi dimensional reflecting fractional Brownian motion via penalty method. Conference Publications, 2005, 2005 (Special) : 463475. doi: 10.3934/proc.2005.2005.463 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]