
Previous Article
Noncontrollability for the ColemannGurtin model in several dimensions
 PROC Home
 This Issue

Next Article
Modeling HIV: Determining the factors affecting the racial disparity in the prevalence of infected women
On reachability analysis for nonlinear control systems with state constraints
1.  N.N.Krasovskii Institute of Mathematics and Mechanics, S.Kovalevskaya str., 16, 620099, Ekaterinburg, Russian Federation 
References:
show all references
References:
[1] 
Jianling Li, Chunting Lu, Youfang Zeng. A smooth QPfree algorithm without a penalty function or a filter for mathematical programs with complementarity constraints. Numerical Algebra, Control and Optimization, 2015, 5 (2) : 115126. doi: 10.3934/naco.2015.5.115 
[2] 
Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial and Management Optimization, 2005, 1 (4) : 533547. doi: 10.3934/jimo.2005.1.533 
[3] 
Robert Baier, Matthias Gerdts, Ilaria Xausa. Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control and Optimization, 2013, 3 (3) : 519548. doi: 10.3934/naco.2013.3.519 
[4] 
Shay Kels, Nira Dyn. Bernsteintype approximation of setvalued functions in the symmetric difference metric. Discrete and Continuous Dynamical Systems, 2014, 34 (3) : 10411060. doi: 10.3934/dcds.2014.34.1041 
[5] 
Canghua Jiang, Zhiqiang Guo, Xin Li, Hai Wang, Ming Yu. An efficient adjoint computational method based on lifted IRK integrator and exact penalty function for optimal control problems involving continuous inequality constraints. Discrete and Continuous Dynamical Systems  S, 2020, 13 (6) : 18451865. doi: 10.3934/dcdss.2020109 
[6] 
Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete and Continuous Dynamical Systems  B, 2003, 3 (3) : 361382. doi: 10.3934/dcdsb.2003.3.361 
[7] 
Canghua Jiang, Dongming Zhang, Chi Yuan, Kok Ley Teo. An active set solver for constrained $ H_\infty $ optimal control problems with state and input constraints. Numerical Algebra, Control and Optimization, 2022, 12 (1) : 135157. doi: 10.3934/naco.2021056 
[8] 
Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial and Management Optimization, 2007, 3 (2) : 381398. doi: 10.3934/jimo.2007.3.381 
[9] 
H. N. Mhaskar, T. Poggio. Function approximation by deep networks. Communications on Pure and Applied Analysis, 2020, 19 (8) : 40854095. doi: 10.3934/cpaa.2020181 
[10] 
AnnaLena HorlemannTrautmann, Violetta Weger. Information set decoding in the Lee metric with applications to cryptography. Advances in Mathematics of Communications, 2021, 15 (4) : 677699. doi: 10.3934/amc.2020089 
[11] 
Kendry J. Vivas, Víctor F. Sirvent. Metric entropy for setvalued maps. Discrete and Continuous Dynamical Systems  B, 2022, 27 (11) : 65896604. doi: 10.3934/dcdsb.2022010 
[12] 
Ugo Bessi. The stochastic value function in metric measure spaces. Discrete and Continuous Dynamical Systems, 2017, 37 (4) : 18191839. doi: 10.3934/dcds.2017076 
[13] 
Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order HamiltonJacobiBellman equations. Approximation of probabilistic reachable sets. Discrete and Continuous Dynamical Systems, 2015, 35 (9) : 39333964. doi: 10.3934/dcds.2015.35.3933 
[14] 
X. X. Huang, D. Li, Xiaoqi Yang. Convergence of optimal values of quadratic penalty problems for mathematical programs with complementarity constraints. Journal of Industrial and Management Optimization, 2006, 2 (3) : 287296. doi: 10.3934/jimo.2006.2.287 
[15] 
Zhiqing Meng, Qiying Hu, Chuangyin Dang. A penalty function algorithm with objective parameters for nonlinear mathematical programming. Journal of Industrial and Management Optimization, 2009, 5 (3) : 585601. doi: 10.3934/jimo.2009.5.585 
[16] 
Cheng Ma, Xun Li, KaFai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semiinfinite programming problems. Journal of Industrial and Management Optimization, 2012, 8 (3) : 705726. doi: 10.3934/jimo.2012.8.705 
[17] 
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial and Management Optimization, 2010, 6 (4) : 895910. doi: 10.3934/jimo.2010.6.895 
[18] 
Yarui Duan, Pengcheng Wu, Yuying Zhou. Penalty approximation method for a double obstacle quasilinear parabolic variational inequality problem. Journal of Industrial and Management Optimization, 2022 doi: 10.3934/jimo.2022017 
[19] 
Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations and Control Theory, 2013, 2 (1) : 173192. doi: 10.3934/eect.2013.2.173 
[20] 
JeanFrançois Babadjian, Clément Mifsud, Nicolas Seguin. Relaxation approximation of Friedrichs' systems under convex constraints. Networks and Heterogeneous Media, 2016, 11 (2) : 223237. doi: 10.3934/nhm.2016.11.223 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]