
Previous Article
Modeling HIV: Determining the factors affecting the racial disparity in the prevalence of infected women
 PROC Home
 This Issue

Next Article
Noncontrollability for the ColemannGurtin model in several dimensions
On reachability analysis for nonlinear control systems with state constraints
1.  N.N.Krasovskii Institute of Mathematics and Mechanics, S.Kovalevskaya str., 16, 620099, Ekaterinburg, Russian Federation 
References:
show all references
References:
[1] 
Jianling Li, Chunting Lu, Youfang Zeng. A smooth QPfree algorithm without a penalty function or a filter for mathematical programs with complementarity constraints. Numerical Algebra, Control & Optimization, 2015, 5 (2) : 115126. doi: 10.3934/naco.2015.5.115 
[2] 
Z.Y. Wu, H.W.J. Lee, F.S. Bai, L.S. Zhang. Quadratic smoothing approximation to $l_1$ exact penalty function in global optimization. Journal of Industrial & Management Optimization, 2005, 1 (4) : 533547. doi: 10.3934/jimo.2005.1.533 
[3] 
Robert Baier, Matthias Gerdts, Ilaria Xausa. Approximation of reachable sets using optimal control algorithms. Numerical Algebra, Control & Optimization, 2013, 3 (3) : 519548. doi: 10.3934/naco.2013.3.519 
[4] 
Shay Kels, Nira Dyn. Bernsteintype approximation of setvalued functions in the symmetric difference metric. Discrete & Continuous Dynamical Systems  A, 2014, 34 (3) : 10411060. doi: 10.3934/dcds.2014.34.1041 
[5] 
Dietmar Szolnoki. Set oriented methods for computing reachable sets and control sets. Discrete & Continuous Dynamical Systems  B, 2003, 3 (3) : 361382. doi: 10.3934/dcdsb.2003.3.361 
[6] 
Regina S. Burachik, C. Yalçın Kaya. An update rule and a convergence result for a penalty function method. Journal of Industrial & Management Optimization, 2007, 3 (2) : 381398. doi: 10.3934/jimo.2007.3.381 
[7] 
Ugo Bessi. The stochastic value function in metric measure spaces. Discrete & Continuous Dynamical Systems  A, 2017, 37 (4) : 18191839. doi: 10.3934/dcds.2017076 
[8] 
Mohamed Assellaou, Olivier Bokanowski, Hasnaa Zidani. Error estimates for second order HamiltonJacobiBellman equations. Approximation of probabilistic reachable sets. Discrete & Continuous Dynamical Systems  A, 2015, 35 (9) : 39333964. doi: 10.3934/dcds.2015.35.3933 
[9] 
X. X. Huang, D. Li, Xiaoqi Yang. Convergence of optimal values of quadratic penalty problems for mathematical programs with complementarity constraints. Journal of Industrial & Management Optimization, 2006, 2 (3) : 287296. doi: 10.3934/jimo.2006.2.287 
[10] 
Cheng Ma, Xun Li, KaFai Cedric Yiu, Yongjian Yang, Liansheng Zhang. On an exact penalty function method for semiinfinite programming problems. Journal of Industrial & Management Optimization, 2012, 8 (3) : 705726. doi: 10.3934/jimo.2012.8.705 
[11] 
Zhiqing Meng, Qiying Hu, Chuangyin Dang. A penalty function algorithm with objective parameters for nonlinear mathematical programming. Journal of Industrial & Management Optimization, 2009, 5 (3) : 585601. doi: 10.3934/jimo.2009.5.585 
[12] 
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. A new exact penalty function method for continuous inequality constrained optimization problems. Journal of Industrial & Management Optimization, 2010, 6 (4) : 895910. doi: 10.3934/jimo.2010.6.895 
[13] 
Stephen Thompson, Thomas I. Seidman. Approximation of a semigroup model of anomalous diffusion in a bounded set. Evolution Equations & Control Theory, 2013, 2 (1) : 173192. doi: 10.3934/eect.2013.2.173 
[14] 
JeanFrançois Babadjian, Clément Mifsud, Nicolas Seguin. Relaxation approximation of Friedrichs' systems under convex constraints. Networks & Heterogeneous Media, 2016, 11 (2) : 223237. doi: 10.3934/nhm.2016.11.223 
[15] 
M. Arisawa, P.L. Lions. Continuity of admissible trajectories for state constraints control problems. Discrete & Continuous Dynamical Systems  A, 1996, 2 (3) : 297305. doi: 10.3934/dcds.1996.2.297 
[16] 
Thomas Lorenz. Partial differential inclusions of transport type with state constraints. Discrete & Continuous Dynamical Systems  B, 2019, 24 (3) : 13091340. doi: 10.3934/dcdsb.2019018 
[17] 
Changjun Yu, Kok Lay Teo, Liansheng Zhang, Yanqin Bai. On a refinement of the convergence analysis for the new exact penalty function method for continuous inequality constrained optimization problem. Journal of Industrial & Management Optimization, 2012, 8 (2) : 485491. doi: 10.3934/jimo.2012.8.485 
[18] 
Sanyi Tang, Wenhong Pang. On the continuity of the function describing the times of meeting impulsive set and its application. Mathematical Biosciences & Engineering, 2017, 14 (5&6) : 13991406. doi: 10.3934/mbe.2017072 
[19] 
S. Kanagawa, K. Inoue, A. Arimoto, Y. Saisho. Mean square approximation of multi dimensional reflecting fractional Brownian motion via penalty method. Conference Publications, 2005, 2005 (Special) : 463475. doi: 10.3934/proc.2005.2005.463 
[20] 
Yongchao Liu, Hailin Sun, Huifu Xu. An approximation scheme for stochastic programs with second order dominance constraints. Numerical Algebra, Control & Optimization, 2016, 6 (4) : 473490. doi: 10.3934/naco.2016021 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]