2015, 2015(special): 588-595. doi: 10.3934/proc.2015.0588

Noncontrollability for the Colemann-Gurtin model in several dimensions

1. 

Department of Mathematics and Informatics, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest

2. 

Dipartimento di Scienze Matematiche "Giuseppe Luigi Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino

Received  September 2014 Revised  August 2015 Published  November 2015

It is proved that, for every smooth kernel $M(t)$, the corresponding Colemann-Gurtin model in several spatial dimensions cannot be controlled to zero.
Citation: Andrei Halanay, Luciano Pandolfi. Noncontrollability for the Colemann-Gurtin model in several dimensions. Conference Publications, 2015, 2015 (special) : 588-595. doi: 10.3934/proc.2015.0588
References:
[1]

S.A. Avdonin, S.A. Ivanov, Families of exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems,, Cambridge University Press, (1995).   Google Scholar

[2]

S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equation with memory,, Quarterly Appl. Math., (): 0033.   Google Scholar

[3]

V. Barbu, M. Iannelli, Controllability of the heat equation with memory,, Diff. Integral Eq., 13 (2000), 1393.   Google Scholar

[4]

A. Bensoussan, G. Da Prato, M. C. Delfour, and S.K. Mitter, Representation and control of infinite dimensional systems,, Birkhäuser Boston, (2007).   Google Scholar

[5]

B. D. Colemann, M. E. Gurtin, Equipresence and constitutive equations for heat conductors,, Z. Angew. Math. Phys., 18 (1967), 199.   Google Scholar

[6]

H. O. Fattorini, D. L. Rusell, Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension,, Arch. Rational Mech. Anal., 43 (1971), 272.   Google Scholar

[7]

G. Gripenberg, S. O. Londen, O. Staffans, Volterra integral and functional equations,, Encyclopedia of Mathematics and Its Applications, 34 (1990).   Google Scholar

[8]

S. Guerrero, O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory,, ESAIM: Control, 19 (2013), 288.   Google Scholar

[9]

A. Halanay, L. Pandolfi, Lack of controllability of the heat equation with memory,, Systems & Control Letters, 61 (2012), 999.   Google Scholar

[10]

A. Halanay, L. Pandolfi, Lack of controllability of thermal systems with memory,, Evol. Eq. Control Theory, 3 (2014), 485.   Google Scholar

[11]

A. Halanay, L. Pandolfi, Approximate controllability and lack of controllability to zero of the heat equation with memory,, J. Math. Anal. Appl., (2015), 194.   Google Scholar

[12]

S. Ivanov, L. Pandolfi, Heat equation with memory: Lack of controllability to rest,, J. Math. Anal. Appl., 355 (2009), 1.   Google Scholar

[13]

I. Lasiecka, R. Triggiani, Control theory for partial differential equations: continuous and approximation theories. II. Abstract hyperbolic-like systems over a finite time horizon,, Encyclopedia of Mathematics and Its Applications, 75 (2000).   Google Scholar

[14]

V. Lakshmikantham, R. M. Rao, Theory of integro-differential equations,, Gordon & Breach, (1995).   Google Scholar

[15]

J. L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles,, Dunod, (1968).   Google Scholar

[16]

V. P. Mikhailov, Partial Differential Equations,, Mir, (1978).   Google Scholar

[17]

L. Pandolfi, Riesz systems and controllability of heat equations with memory,, Int. Eq. Operator Theory, 64 (2009), 429.   Google Scholar

[18]

L. Pandolfi, Riesz systems and moment method in the study of heat equations with memory in one space dimension,, Discr. Cont. Dynamical Systems, B 14 (2010), 1487.   Google Scholar

[19]

L. Pandolfi, Sharp control time in viscoelasticity,, in preparation., ().   Google Scholar

[20]

D. D. Joseph, L. Preziosi, Heat waves,, Rev. Modern Phys., 61 (1989), 41.   Google Scholar

[21]

L. Schwartz, Etude des sommes d'exponentielles., Hermann, (1959).   Google Scholar

[22]

M. Tucsnak, G. Weiss:, Observation and control for operator semigroups, \/, Birkhäuser, (2009).   Google Scholar

show all references

References:
[1]

S.A. Avdonin, S.A. Ivanov, Families of exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems,, Cambridge University Press, (1995).   Google Scholar

[2]

S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equation with memory,, Quarterly Appl. Math., (): 0033.   Google Scholar

[3]

V. Barbu, M. Iannelli, Controllability of the heat equation with memory,, Diff. Integral Eq., 13 (2000), 1393.   Google Scholar

[4]

A. Bensoussan, G. Da Prato, M. C. Delfour, and S.K. Mitter, Representation and control of infinite dimensional systems,, Birkhäuser Boston, (2007).   Google Scholar

[5]

B. D. Colemann, M. E. Gurtin, Equipresence and constitutive equations for heat conductors,, Z. Angew. Math. Phys., 18 (1967), 199.   Google Scholar

[6]

H. O. Fattorini, D. L. Rusell, Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension,, Arch. Rational Mech. Anal., 43 (1971), 272.   Google Scholar

[7]

G. Gripenberg, S. O. Londen, O. Staffans, Volterra integral and functional equations,, Encyclopedia of Mathematics and Its Applications, 34 (1990).   Google Scholar

[8]

S. Guerrero, O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory,, ESAIM: Control, 19 (2013), 288.   Google Scholar

[9]

A. Halanay, L. Pandolfi, Lack of controllability of the heat equation with memory,, Systems & Control Letters, 61 (2012), 999.   Google Scholar

[10]

A. Halanay, L. Pandolfi, Lack of controllability of thermal systems with memory,, Evol. Eq. Control Theory, 3 (2014), 485.   Google Scholar

[11]

A. Halanay, L. Pandolfi, Approximate controllability and lack of controllability to zero of the heat equation with memory,, J. Math. Anal. Appl., (2015), 194.   Google Scholar

[12]

S. Ivanov, L. Pandolfi, Heat equation with memory: Lack of controllability to rest,, J. Math. Anal. Appl., 355 (2009), 1.   Google Scholar

[13]

I. Lasiecka, R. Triggiani, Control theory for partial differential equations: continuous and approximation theories. II. Abstract hyperbolic-like systems over a finite time horizon,, Encyclopedia of Mathematics and Its Applications, 75 (2000).   Google Scholar

[14]

V. Lakshmikantham, R. M. Rao, Theory of integro-differential equations,, Gordon & Breach, (1995).   Google Scholar

[15]

J. L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles,, Dunod, (1968).   Google Scholar

[16]

V. P. Mikhailov, Partial Differential Equations,, Mir, (1978).   Google Scholar

[17]

L. Pandolfi, Riesz systems and controllability of heat equations with memory,, Int. Eq. Operator Theory, 64 (2009), 429.   Google Scholar

[18]

L. Pandolfi, Riesz systems and moment method in the study of heat equations with memory in one space dimension,, Discr. Cont. Dynamical Systems, B 14 (2010), 1487.   Google Scholar

[19]

L. Pandolfi, Sharp control time in viscoelasticity,, in preparation., ().   Google Scholar

[20]

D. D. Joseph, L. Preziosi, Heat waves,, Rev. Modern Phys., 61 (1989), 41.   Google Scholar

[21]

L. Schwartz, Etude des sommes d'exponentielles., Hermann, (1959).   Google Scholar

[22]

M. Tucsnak, G. Weiss:, Observation and control for operator semigroups, \/, Birkhäuser, (2009).   Google Scholar

[1]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[2]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[3]

Touria Karite, Ali Boutoulout. Global and regional constrained controllability for distributed parabolic linear systems: RHUM approach. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020055

[4]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[5]

Manil T. Mohan. Global attractors, exponential attractors and determining modes for the three dimensional Kelvin-Voigt fluids with "fading memory". Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020105

[6]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[7]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[8]

Andrea Braides, Antonio Tribuzio. Perturbed minimizing movements of families of functionals. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 373-393. doi: 10.3934/dcdss.2020324

[9]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[10]

Barbora Benešová, Miroslav Frost, Lukáš Kadeřávek, Tomáš Roubíček, Petr Sedlák. An experimentally-fitted thermodynamical constitutive model for polycrystalline shape memory alloys. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020459

[11]

Predrag S. Stanimirović, Branislav Ivanov, Haifeng Ma, Dijana Mosić. A survey of gradient methods for solving nonlinear optimization. Electronic Research Archive, 2020, 28 (4) : 1573-1624. doi: 10.3934/era.2020115

[12]

Zhouchao Wei, Wei Zhang, Irene Moroz, Nikolay V. Kuznetsov. Codimension one and two bifurcations in Cattaneo-Christov heat flux model. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020344

[13]

Giulia Luise, Giuseppe Savaré. Contraction and regularizing properties of heat flows in metric measure spaces. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 273-297. doi: 10.3934/dcdss.2020327

[14]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

[15]

Mark F. Demers. Uniqueness and exponential mixing for the measure of maximal entropy for piecewise hyperbolic maps. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 217-256. doi: 10.3934/dcds.2020217

[16]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[17]

Dan Zhu, Rosemary A. Renaut, Hongwei Li, Tianyou Liu. Fast non-convex low-rank matrix decomposition for separation of potential field data using minimal memory. Inverse Problems & Imaging, , () : -. doi: 10.3934/ipi.2020076

[18]

Xin Guo, Lei Shi. Preface of the special issue on analysis in data science: Methods and applications. Mathematical Foundations of Computing, 2020, 3 (4) : i-ii. doi: 10.3934/mfc.2020026

[19]

Shun Zhang, Jianlin Jiang, Su Zhang, Yibing Lv, Yuzhen Guo. ADMM-type methods for generalized multi-facility Weber problem. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020171

[20]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, 2021, 20 (1) : 319-338. doi: 10.3934/cpaa.2020268

 Impact Factor: 

Metrics

  • PDF downloads (45)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]