2015, 2015(special): 588-595. doi: 10.3934/proc.2015.0588

Noncontrollability for the Colemann-Gurtin model in several dimensions

1. 

Department of Mathematics and Informatics, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest

2. 

Dipartimento di Scienze Matematiche "Giuseppe Luigi Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino

Received  September 2014 Revised  August 2015 Published  November 2015

It is proved that, for every smooth kernel $M(t)$, the corresponding Colemann-Gurtin model in several spatial dimensions cannot be controlled to zero.
Citation: Andrei Halanay, Luciano Pandolfi. Noncontrollability for the Colemann-Gurtin model in several dimensions. Conference Publications, 2015, 2015 (special) : 588-595. doi: 10.3934/proc.2015.0588
References:
[1]

S.A. Avdonin, S.A. Ivanov, Families of exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems,, Cambridge University Press, (1995). Google Scholar

[2]

S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equation with memory,, Quarterly Appl. Math., (): 0033. Google Scholar

[3]

V. Barbu, M. Iannelli, Controllability of the heat equation with memory,, Diff. Integral Eq., 13 (2000), 1393. Google Scholar

[4]

A. Bensoussan, G. Da Prato, M. C. Delfour, and S.K. Mitter, Representation and control of infinite dimensional systems,, Birkhäuser Boston, (2007). Google Scholar

[5]

B. D. Colemann, M. E. Gurtin, Equipresence and constitutive equations for heat conductors,, Z. Angew. Math. Phys., 18 (1967), 199. Google Scholar

[6]

H. O. Fattorini, D. L. Rusell, Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension,, Arch. Rational Mech. Anal., 43 (1971), 272. Google Scholar

[7]

G. Gripenberg, S. O. Londen, O. Staffans, Volterra integral and functional equations,, Encyclopedia of Mathematics and Its Applications, 34 (1990). Google Scholar

[8]

S. Guerrero, O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory,, ESAIM: Control, 19 (2013), 288. Google Scholar

[9]

A. Halanay, L. Pandolfi, Lack of controllability of the heat equation with memory,, Systems & Control Letters, 61 (2012), 999. Google Scholar

[10]

A. Halanay, L. Pandolfi, Lack of controllability of thermal systems with memory,, Evol. Eq. Control Theory, 3 (2014), 485. Google Scholar

[11]

A. Halanay, L. Pandolfi, Approximate controllability and lack of controllability to zero of the heat equation with memory,, J. Math. Anal. Appl., (2015), 194. Google Scholar

[12]

S. Ivanov, L. Pandolfi, Heat equation with memory: Lack of controllability to rest,, J. Math. Anal. Appl., 355 (2009), 1. Google Scholar

[13]

I. Lasiecka, R. Triggiani, Control theory for partial differential equations: continuous and approximation theories. II. Abstract hyperbolic-like systems over a finite time horizon,, Encyclopedia of Mathematics and Its Applications, 75 (2000). Google Scholar

[14]

V. Lakshmikantham, R. M. Rao, Theory of integro-differential equations,, Gordon & Breach, (1995). Google Scholar

[15]

J. L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles,, Dunod, (1968). Google Scholar

[16]

V. P. Mikhailov, Partial Differential Equations,, Mir, (1978). Google Scholar

[17]

L. Pandolfi, Riesz systems and controllability of heat equations with memory,, Int. Eq. Operator Theory, 64 (2009), 429. Google Scholar

[18]

L. Pandolfi, Riesz systems and moment method in the study of heat equations with memory in one space dimension,, Discr. Cont. Dynamical Systems, B 14 (2010), 1487. Google Scholar

[19]

L. Pandolfi, Sharp control time in viscoelasticity,, in preparation., (). Google Scholar

[20]

D. D. Joseph, L. Preziosi, Heat waves,, Rev. Modern Phys., 61 (1989), 41. Google Scholar

[21]

L. Schwartz, Etude des sommes d'exponentielles., Hermann, (1959). Google Scholar

[22]

M. Tucsnak, G. Weiss:, Observation and control for operator semigroups, \/, Birkhäuser, (2009). Google Scholar

show all references

References:
[1]

S.A. Avdonin, S.A. Ivanov, Families of exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems,, Cambridge University Press, (1995). Google Scholar

[2]

S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equation with memory,, Quarterly Appl. Math., (): 0033. Google Scholar

[3]

V. Barbu, M. Iannelli, Controllability of the heat equation with memory,, Diff. Integral Eq., 13 (2000), 1393. Google Scholar

[4]

A. Bensoussan, G. Da Prato, M. C. Delfour, and S.K. Mitter, Representation and control of infinite dimensional systems,, Birkhäuser Boston, (2007). Google Scholar

[5]

B. D. Colemann, M. E. Gurtin, Equipresence and constitutive equations for heat conductors,, Z. Angew. Math. Phys., 18 (1967), 199. Google Scholar

[6]

H. O. Fattorini, D. L. Rusell, Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension,, Arch. Rational Mech. Anal., 43 (1971), 272. Google Scholar

[7]

G. Gripenberg, S. O. Londen, O. Staffans, Volterra integral and functional equations,, Encyclopedia of Mathematics and Its Applications, 34 (1990). Google Scholar

[8]

S. Guerrero, O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory,, ESAIM: Control, 19 (2013), 288. Google Scholar

[9]

A. Halanay, L. Pandolfi, Lack of controllability of the heat equation with memory,, Systems & Control Letters, 61 (2012), 999. Google Scholar

[10]

A. Halanay, L. Pandolfi, Lack of controllability of thermal systems with memory,, Evol. Eq. Control Theory, 3 (2014), 485. Google Scholar

[11]

A. Halanay, L. Pandolfi, Approximate controllability and lack of controllability to zero of the heat equation with memory,, J. Math. Anal. Appl., (2015), 194. Google Scholar

[12]

S. Ivanov, L. Pandolfi, Heat equation with memory: Lack of controllability to rest,, J. Math. Anal. Appl., 355 (2009), 1. Google Scholar

[13]

I. Lasiecka, R. Triggiani, Control theory for partial differential equations: continuous and approximation theories. II. Abstract hyperbolic-like systems over a finite time horizon,, Encyclopedia of Mathematics and Its Applications, 75 (2000). Google Scholar

[14]

V. Lakshmikantham, R. M. Rao, Theory of integro-differential equations,, Gordon & Breach, (1995). Google Scholar

[15]

J. L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles,, Dunod, (1968). Google Scholar

[16]

V. P. Mikhailov, Partial Differential Equations,, Mir, (1978). Google Scholar

[17]

L. Pandolfi, Riesz systems and controllability of heat equations with memory,, Int. Eq. Operator Theory, 64 (2009), 429. Google Scholar

[18]

L. Pandolfi, Riesz systems and moment method in the study of heat equations with memory in one space dimension,, Discr. Cont. Dynamical Systems, B 14 (2010), 1487. Google Scholar

[19]

L. Pandolfi, Sharp control time in viscoelasticity,, in preparation., (). Google Scholar

[20]

D. D. Joseph, L. Preziosi, Heat waves,, Rev. Modern Phys., 61 (1989), 41. Google Scholar

[21]

L. Schwartz, Etude des sommes d'exponentielles., Hermann, (1959). Google Scholar

[22]

M. Tucsnak, G. Weiss:, Observation and control for operator semigroups, \/, Birkhäuser, (2009). Google Scholar

[1]

Andrei Halanay, Luciano Pandolfi. Lack of controllability of thermal systems with memory. Evolution Equations & Control Theory, 2014, 3 (3) : 485-497. doi: 10.3934/eect.2014.3.485

[2]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete & Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[3]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[4]

Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations & Control Theory, 2019, 0 (0) : 0-0. doi: 10.3934/eect.2020011

[5]

Víctor Hernández-Santamaría, Liliana Peralta. Some remarks on the Robust Stackelberg controllability for the heat equation with controls on the boundary. Discrete & Continuous Dynamical Systems - B, 2017, 22 (11) : 1-19. doi: 10.3934/dcdsb.2019177

[6]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control & Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

[7]

Ping Lin. Feedback controllability for blowup points of semilinear heat equations. Discrete & Continuous Dynamical Systems - B, 2017, 22 (4) : 1425-1434. doi: 10.3934/dcdsb.2017068

[8]

Víctor Hernández-Santamaría, Luz de Teresa. Robust Stackelberg controllability for linear and semilinear heat equations. Evolution Equations & Control Theory, 2018, 7 (2) : 247-273. doi: 10.3934/eect.2018012

[9]

Dario Pighin, Enrique Zuazua. Controllability under positivity constraints of semilinear heat equations. Mathematical Control & Related Fields, 2018, 8 (3&4) : 935-964. doi: 10.3934/mcrf.2018041

[10]

Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control & Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011

[11]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems & Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[12]

Sergei A. Avdonin, Boris P. Belinskiy. On controllability of a linear elastic beam with memory under longitudinal load. Evolution Equations & Control Theory, 2014, 3 (2) : 231-245. doi: 10.3934/eect.2014.3.231

[13]

Qi Lü, Enrique Zuazua. Robust null controllability for heat equations with unknown switching control mode. Discrete & Continuous Dynamical Systems - A, 2014, 34 (10) : 4183-4210. doi: 10.3934/dcds.2014.34.4183

[14]

Jonathan Touboul. Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control & Related Fields, 2012, 2 (4) : 429-455. doi: 10.3934/mcrf.2012.2.429

[15]

Jonathan Touboul. Erratum on: Controllability of the heat and wave equations and their finite difference approximations by the shape of the domain. Mathematical Control & Related Fields, 2019, 9 (1) : 221-222. doi: 10.3934/mcrf.2019006

[16]

Bopeng Rao, Laila Toufayli, Ali Wehbe. Stability and controllability of a wave equation with dynamical boundary control. Mathematical Control & Related Fields, 2015, 5 (2) : 305-320. doi: 10.3934/mcrf.2015.5.305

[17]

Jamel Ben Amara, Hedi Bouzidi. Exact boundary controllability for the Boussinesq equation with variable coefficients. Evolution Equations & Control Theory, 2018, 7 (3) : 403-415. doi: 10.3934/eect.2018020

[18]

Xiangqing Zhao, Bing-Yu Zhang. Global controllability and stabilizability of Kawahara equation on a periodic domain. Mathematical Control & Related Fields, 2015, 5 (2) : 335-358. doi: 10.3934/mcrf.2015.5.335

[19]

Oleg Yu. Imanuvilov, Jean Pierre Puel. On global controllability of 2-D Burgers equation. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 299-313. doi: 10.3934/dcds.2009.23.299

[20]

Mohamed Ouzahra. Controllability of the semilinear wave equation governed by a multiplicative control. Evolution Equations & Control Theory, 2019, 8 (4) : 669-686. doi: 10.3934/eect.2019039

 Impact Factor: 

Metrics

  • PDF downloads (13)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]