2015, 2015(special): 588-595. doi: 10.3934/proc.2015.0588

Noncontrollability for the Colemann-Gurtin model in several dimensions

1. 

Department of Mathematics and Informatics, University Politehnica of Bucharest, 313 Splaiul Independentei, 060042 Bucharest

2. 

Dipartimento di Scienze Matematiche "Giuseppe Luigi Lagrange", Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino

Received  September 2014 Revised  August 2015 Published  November 2015

It is proved that, for every smooth kernel $M(t)$, the corresponding Colemann-Gurtin model in several spatial dimensions cannot be controlled to zero.
Citation: Andrei Halanay, Luciano Pandolfi. Noncontrollability for the Colemann-Gurtin model in several dimensions. Conference Publications, 2015, 2015 (special) : 588-595. doi: 10.3934/proc.2015.0588
References:
[1]

S.A. Avdonin, S.A. Ivanov, Families of exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, New-York, 1995.

[2]

S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equation with memory,, Quarterly Appl. Math., (): 0033. 

[3]

V. Barbu, M. Iannelli, Controllability of the heat equation with memory, Diff. Integral Eq., 13 (2000), 1393-1412.

[4]

A. Bensoussan, G. Da Prato, M. C. Delfour, and S.K. Mitter, Representation and control of infinite dimensional systems, Birkhäuser Boston, MA, 2007.

[5]

B. D. Colemann, M. E. Gurtin, Equipresence and constitutive equations for heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.

[6]

H. O. Fattorini, D. L. Rusell, Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension, Arch. Rational Mech. Anal., 43 (1971), 272-292.

[7]

G. Gripenberg, S. O. Londen, O. Staffans, Volterra integral and functional equations, Encyclopedia of Mathematics and Its Applications, 34, Cambridge University Press, Cambridge, 1990.

[8]

S. Guerrero, O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 288-300.

[9]

A. Halanay, L. Pandolfi, Lack of controllability of the heat equation with memory, Systems & Control Letters, 61 (2012), 999-1002.

[10]

A. Halanay, L. Pandolfi, Lack of controllability of thermal systems with memory, Evol. Eq. Control Theory, 3(3) (2014), 485-497.

[11]

A. Halanay, L. Pandolfi, Approximate controllability and lack of controllability to zero of the heat equation with memory, J. Math. Anal. Appl., 425 (2015), 194-211.

[12]

S. Ivanov, L. Pandolfi, Heat equation with memory: Lack of controllability to rest, J. Math. Anal. Appl., 355 (2009), 1-11.

[13]

I. Lasiecka, R. Triggiani, Control theory for partial differential equations: continuous and approximation theories. II. Abstract hyperbolic-like systems over a finite time horizon, Encyclopedia of Mathematics and Its Applications, 75. Cambridge University Press, Cambridge 2000.

[14]

V. Lakshmikantham, R. M. Rao, Theory of integro-differential equations, Gordon & Breach, Lausanne 1995.

[15]

J. L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris 1968.

[16]

V. P. Mikhailov, Partial Differential Equations, Mir, Moscou 1978.

[17]

L. Pandolfi, Riesz systems and controllability of heat equations with memory, Int. Eq. Operator Theory, 64 (2009), 429-453.

[18]

L. Pandolfi, Riesz systems and moment method in the study of heat equations with memory in one space dimension, Discr. Cont. Dynamical Systems, B 14 (2010), 1487-1510.

[19]

L. Pandolfi, Sharp control time in viscoelasticity,, in preparation., (). 

[20]

D. D. Joseph, L. Preziosi, Heat waves, Rev. Modern Phys., 61 (1989), 41-73; Addendum to the paper: "Heat waves", Rev. Modern Phys., 62 (1990), 375-391.

[21]

L. Schwartz, Etude des sommes d'exponentielles. Hermann, Paris 1959.

[22]

M. Tucsnak, G. Weiss:, Observation and control for operator semigroups, \/ Birkhäuser, Base, 2009.

show all references

References:
[1]

S.A. Avdonin, S.A. Ivanov, Families of exponentials. The Method of Moments in Controllability Problems for Distributed Parameter Systems, Cambridge University Press, New-York, 1995.

[2]

S. Avdonin and L. Pandolfi, Simultaneous temperature and flux controllability for heat equation with memory,, Quarterly Appl. Math., (): 0033. 

[3]

V. Barbu, M. Iannelli, Controllability of the heat equation with memory, Diff. Integral Eq., 13 (2000), 1393-1412.

[4]

A. Bensoussan, G. Da Prato, M. C. Delfour, and S.K. Mitter, Representation and control of infinite dimensional systems, Birkhäuser Boston, MA, 2007.

[5]

B. D. Colemann, M. E. Gurtin, Equipresence and constitutive equations for heat conductors, Z. Angew. Math. Phys., 18 (1967), 199-208.

[6]

H. O. Fattorini, D. L. Rusell, Exact Controllability Theorems for Linear Parabolic Equations in One Space Dimension, Arch. Rational Mech. Anal., 43 (1971), 272-292.

[7]

G. Gripenberg, S. O. Londen, O. Staffans, Volterra integral and functional equations, Encyclopedia of Mathematics and Its Applications, 34, Cambridge University Press, Cambridge, 1990.

[8]

S. Guerrero, O. Y. Imanuvilov, Remarks on non controllability of the heat equation with memory, ESAIM: Control, Optimisation and Calculus of Variations, 19 (2013), 288-300.

[9]

A. Halanay, L. Pandolfi, Lack of controllability of the heat equation with memory, Systems & Control Letters, 61 (2012), 999-1002.

[10]

A. Halanay, L. Pandolfi, Lack of controllability of thermal systems with memory, Evol. Eq. Control Theory, 3(3) (2014), 485-497.

[11]

A. Halanay, L. Pandolfi, Approximate controllability and lack of controllability to zero of the heat equation with memory, J. Math. Anal. Appl., 425 (2015), 194-211.

[12]

S. Ivanov, L. Pandolfi, Heat equation with memory: Lack of controllability to rest, J. Math. Anal. Appl., 355 (2009), 1-11.

[13]

I. Lasiecka, R. Triggiani, Control theory for partial differential equations: continuous and approximation theories. II. Abstract hyperbolic-like systems over a finite time horizon, Encyclopedia of Mathematics and Its Applications, 75. Cambridge University Press, Cambridge 2000.

[14]

V. Lakshmikantham, R. M. Rao, Theory of integro-differential equations, Gordon & Breach, Lausanne 1995.

[15]

J. L. Lions, Contrôle optimal de systèmes gouvernés par des équations aux dérivées partielles, Dunod, Paris 1968.

[16]

V. P. Mikhailov, Partial Differential Equations, Mir, Moscou 1978.

[17]

L. Pandolfi, Riesz systems and controllability of heat equations with memory, Int. Eq. Operator Theory, 64 (2009), 429-453.

[18]

L. Pandolfi, Riesz systems and moment method in the study of heat equations with memory in one space dimension, Discr. Cont. Dynamical Systems, B 14 (2010), 1487-1510.

[19]

L. Pandolfi, Sharp control time in viscoelasticity,, in preparation., (). 

[20]

D. D. Joseph, L. Preziosi, Heat waves, Rev. Modern Phys., 61 (1989), 41-73; Addendum to the paper: "Heat waves", Rev. Modern Phys., 62 (1990), 375-391.

[21]

L. Schwartz, Etude des sommes d'exponentielles. Hermann, Paris 1959.

[22]

M. Tucsnak, G. Weiss:, Observation and control for operator semigroups, \/ Birkhäuser, Base, 2009.

[1]

Andrei Halanay, Luciano Pandolfi. Lack of controllability of thermal systems with memory. Evolution Equations and Control Theory, 2014, 3 (3) : 485-497. doi: 10.3934/eect.2014.3.485

[2]

Luciano Pandolfi. Riesz systems, spectral controllability and a source identification problem for heat equations with memory. Discrete and Continuous Dynamical Systems - S, 2011, 4 (3) : 745-759. doi: 10.3934/dcdss.2011.4.745

[3]

Ovidiu Cârjă, Alina Lazu. On the minimal time null controllability of the heat equation. Conference Publications, 2009, 2009 (Special) : 143-150. doi: 10.3934/proc.2009.2009.143

[4]

Umberto Biccari, Mahamadi Warma. Null-controllability properties of a fractional wave equation with a memory term. Evolution Equations and Control Theory, 2020, 9 (2) : 399-430. doi: 10.3934/eect.2020011

[5]

Abdelaziz Khoutaibi, Lahcen Maniar. Null controllability for a heat equation with dynamic boundary conditions and drift terms. Evolution Equations and Control Theory, 2020, 9 (2) : 535-559. doi: 10.3934/eect.2020023

[6]

Umberto Biccari, Mahamadi Warma, Enrique Zuazua. Controllability of the one-dimensional fractional heat equation under positivity constraints. Communications on Pure and Applied Analysis, 2020, 19 (4) : 1949-1978. doi: 10.3934/cpaa.2020086

[7]

Víctor Hernández-Santamaría, Liliana Peralta. Some remarks on the Robust Stackelberg controllability for the heat equation with controls on the boundary. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 161-190. doi: 10.3934/dcdsb.2019177

[8]

Piermarco Cannarsa, Alessandro Duca, Cristina Urbani. Exact controllability to eigensolutions of the bilinear heat equation on compact networks. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1377-1401. doi: 10.3934/dcdss.2022011

[9]

Abdelaziz Khoutaibi, Lahcen Maniar, Omar Oukdach. Null controllability for semilinear heat equation with dynamic boundary conditions. Discrete and Continuous Dynamical Systems - S, 2022, 15 (6) : 1525-1546. doi: 10.3934/dcdss.2022087

[10]

Melek Jellouli. On the controllability of the BBM equation. Mathematical Control and Related Fields, 2022  doi: 10.3934/mcrf.2022002

[11]

Moncef Aouadi, Imed Mahfoudhi, Taoufik Moulahi. Approximate controllability of nonsimple elastic plate with memory. Discrete and Continuous Dynamical Systems - S, 2022, 15 (5) : 1015-1043. doi: 10.3934/dcdss.2021147

[12]

Enrique Fernández-Cara, Arnaud Münch. Numerical null controllability of semi-linear 1-D heat equations: Fixed point, least squares and Newton methods. Mathematical Control and Related Fields, 2012, 2 (3) : 217-246. doi: 10.3934/mcrf.2012.2.217

[13]

Ping Lin. Feedback controllability for blowup points of semilinear heat equations. Discrete and Continuous Dynamical Systems - B, 2017, 22 (4) : 1425-1434. doi: 10.3934/dcdsb.2017068

[14]

Dario Pighin, Enrique Zuazua. Controllability under positivity constraints of semilinear heat equations. Mathematical Control and Related Fields, 2018, 8 (3&4) : 935-964. doi: 10.3934/mcrf.2018041

[15]

Víctor Hernández-Santamaría, Luz de Teresa. Robust Stackelberg controllability for linear and semilinear heat equations. Evolution Equations and Control Theory, 2018, 7 (2) : 247-273. doi: 10.3934/eect.2018012

[16]

Umberto Biccari. Boundary controllability for a one-dimensional heat equation with a singular inverse-square potential. Mathematical Control and Related Fields, 2019, 9 (1) : 191-219. doi: 10.3934/mcrf.2019011

[17]

Larissa Fardigola, Kateryna Khalina. Controllability problems for the heat equation on a half-axis with a bounded control in the Neumann boundary condition. Mathematical Control and Related Fields, 2021, 11 (1) : 211-236. doi: 10.3934/mcrf.2020034

[18]

Idriss Boutaayamou, Lahcen Maniar, Omar Oukdach. Stackelberg-Nash null controllability of heat equation with general dynamic boundary conditions. Evolution Equations and Control Theory, 2021  doi: 10.3934/eect.2021044

[19]

Sergei A. Avdonin, Sergei A. Ivanov, Jun-Min Wang. Inverse problems for the heat equation with memory. Inverse Problems and Imaging, 2019, 13 (1) : 31-38. doi: 10.3934/ipi.2019002

[20]

Sergei A. Avdonin, Boris P. Belinskiy. On controllability of a linear elastic beam with memory under longitudinal load. Evolution Equations and Control Theory, 2014, 3 (2) : 231-245. doi: 10.3934/eect.2014.3.231

 Impact Factor: 

Metrics

  • PDF downloads (137)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]