• Previous Article
    Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition
  • PROC Home
  • This Issue
  • Next Article
    Existence of positive solutions for a system of nonlinear second-order integral boundary value problems
2015, 2015(special): 605-614. doi: 10.3934/proc.2015.0605

Jacobi--Lie systems: Fundamentals and low-dimensional classification

1. 

Department of Physics, University of Burgos, 09001, Burgos, Spain

2. 

Department of Mathematical Methods in Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warszawa, Poland

3. 

Department of Fundamental Physics, University of Salamanca, Plza. de la Merced s/n, 37.008, Salamanca, Spain

Received  September 2014 Revised  March 2015 Published  November 2015

A Lie system is a system of differential equations describing the integral curves of a $t$-dependent vector field taking values in a finite-dimensional real Lie algebra of vector fields, a Vessiot--Guldberg Lie algebra. We define and analyze Lie systems possessing a Vessiot--Guldberg Lie algebra of Hamiltonian vector fields relative to a Jacobi manifold, the hereafter called Jacobi--Lie systems. We classify Jacobi--Lie systems on $\mathbb{R}$ and $\mathbb{R}^2$. Our results shall be illustrated through examples of physical and mathematical interest.
Citation: F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605
References:
[1]

R. Angelo, E. Duzzioni and A. Ribeiro, Integrability in time-dependent systems with one degree of freedom, J. Phys. A, 45 (2012), 055101. Google Scholar

[2]

A. Ballesteros, A. Blasco, F.J. Herranz, J. de Lucas and C. Sardón, Lie-Hamilton systems on the plane: properties, classification and applications, J. Differential Equations, 258 (2015), 2873-2907. Google Scholar

[3]

A. Ballesteros, J.F. Cariñena, F.J. Herranz, J. de Lucas and C. Sardón, From constants of motion to superposition rules for Lie-Hamilton systems, J. Phys. A, 46 {(2013)}, 285203. Google Scholar

[4]

J.F. Cariñena, J. Grabowski, J. de Lucas and C. Sardón, Dirac-Lie systems and Schwarzian equations, J. Differential Equations, 275 (2014), 2303-2340. Google Scholar

[5]

J.F. Cariñena, J. Grabowski and G. Marmo, Lie-Scheffers Systems: a Geometric Approach, Bibliopolis, Naples, 2000. Google Scholar

[6]

J.F. Cariñena and J. de Lucas, Lie systems: theory, generalisations, and applications, Dissertationes Math. (Rozprawy Mat.), 479 (2011), 1-162. Google Scholar

[7]

J.F. Cariñena, J. de Lucas and C. Sardón, Lie-Hamilton systems: theory and applications, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1350047. Google Scholar

[8]

J.N. Clelland and P.J. Vassiliou, A solvable string on a Lorentzian surface, Differential Geometry and its Applications, 33 (2014), 177-198. Google Scholar

[9]

T. Courant, Dirac Manifolds, Ph.D. Thesis, University of California, Berkeley, 1987. Google Scholar

[10]

I. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A, 125 (1987), 240-246. Google Scholar

[11]

P.G. Estévez, F.J Herranz, J. de Lucas and C. Sardón, Lie symmetries for Lie systems: applications to systems of ODEs and PDEs,, Applied Mathematics and Computation, ().   Google Scholar

[12]

Z. Fiala, Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods, Acta Mech., (2015), 17-35. Google Scholar

[13]

R. Flores-Espinoza, Periodic first integrals for Hamiltonian systems of Lie type, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1169-1177. Google Scholar

[14]

A. González-López, N. Kamran and P.J. Olver, Lie algebras of vector fields in the real plane, Proc. London Math. Soc., 64 (1992), 339-368. Google Scholar

[15]

A. Kirillov, Local Lie algebras, Uspekhi Mat. Nauk., 31 (1976), 57-76. Google Scholar

[16]

P. Libermann and C.M. Marle, Symplectic geometry and analytical mechanics, Mathematics and its Applications, 35, D. Reidel Publishing Co., Dordrecht, (1987). Google Scholar

[17]

A. Lichnerowicz, Les variétés de Poisson et leurs algébres de Lie associées, J. Differential Geometry, 12 (1977), 253-300. Google Scholar

[18]

S. Lie, Theorie der Transformationsgruppen I, Math. Ann., 16 (1880), 441-528. Google Scholar

[19]

S. Lie and G. Scheffers, Vorlesungen Über continuierliche Gruppen mit Geometrischen und anderen Anwendungen, Teubner, Leipzig, 1893. Google Scholar

[20]

J. de Lucas and S. Vilariño, $k$-symplectic Lie systems: theory and applications, J. Differential Equations, 258 (2015), 2221-2255. Google Scholar

[21]

C.M. Marle, Jacobi manifolds and Jacobi bundles, in: Symplectic geometry, grupoids and integrable systems, mathematical sciences research institute publications, 20 (1991), 227-246. Google Scholar

[22]

T. Rybicki, On automorphisms of a Jacobi manifold, Univ. Iagel. Acta Math., 38 (2000), 89-98. Google Scholar

[23]

I. Vaisman, Lectures on the Geometry of Poisson manifolds, Birkhäuser Verlag, Basel, 1994. Google Scholar

[24]

N. Weaver, Sub-Riemannian metrics for quantum Heisenberg manifolds, J. Operator Theory, 43 (2000), 223-242. Google Scholar

[25]

P. Winternitz, Lie groups and solutions of nonlinear differential equations, in Nonlinear Phenomena, Lecture Notes in Phys. 189, Springer, Berlin (1983), 263-331. Google Scholar

show all references

References:
[1]

R. Angelo, E. Duzzioni and A. Ribeiro, Integrability in time-dependent systems with one degree of freedom, J. Phys. A, 45 (2012), 055101. Google Scholar

[2]

A. Ballesteros, A. Blasco, F.J. Herranz, J. de Lucas and C. Sardón, Lie-Hamilton systems on the plane: properties, classification and applications, J. Differential Equations, 258 (2015), 2873-2907. Google Scholar

[3]

A. Ballesteros, J.F. Cariñena, F.J. Herranz, J. de Lucas and C. Sardón, From constants of motion to superposition rules for Lie-Hamilton systems, J. Phys. A, 46 {(2013)}, 285203. Google Scholar

[4]

J.F. Cariñena, J. Grabowski, J. de Lucas and C. Sardón, Dirac-Lie systems and Schwarzian equations, J. Differential Equations, 275 (2014), 2303-2340. Google Scholar

[5]

J.F. Cariñena, J. Grabowski and G. Marmo, Lie-Scheffers Systems: a Geometric Approach, Bibliopolis, Naples, 2000. Google Scholar

[6]

J.F. Cariñena and J. de Lucas, Lie systems: theory, generalisations, and applications, Dissertationes Math. (Rozprawy Mat.), 479 (2011), 1-162. Google Scholar

[7]

J.F. Cariñena, J. de Lucas and C. Sardón, Lie-Hamilton systems: theory and applications, Int. J. Geom. Methods Mod. Phys., 10 (2013), 1350047. Google Scholar

[8]

J.N. Clelland and P.J. Vassiliou, A solvable string on a Lorentzian surface, Differential Geometry and its Applications, 33 (2014), 177-198. Google Scholar

[9]

T. Courant, Dirac Manifolds, Ph.D. Thesis, University of California, Berkeley, 1987. Google Scholar

[10]

I. Dorfman, Dirac structures of integrable evolution equations, Phys. Lett. A, 125 (1987), 240-246. Google Scholar

[11]

P.G. Estévez, F.J Herranz, J. de Lucas and C. Sardón, Lie symmetries for Lie systems: applications to systems of ODEs and PDEs,, Applied Mathematics and Computation, ().   Google Scholar

[12]

Z. Fiala, Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods, Acta Mech., (2015), 17-35. Google Scholar

[13]

R. Flores-Espinoza, Periodic first integrals for Hamiltonian systems of Lie type, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1169-1177. Google Scholar

[14]

A. González-López, N. Kamran and P.J. Olver, Lie algebras of vector fields in the real plane, Proc. London Math. Soc., 64 (1992), 339-368. Google Scholar

[15]

A. Kirillov, Local Lie algebras, Uspekhi Mat. Nauk., 31 (1976), 57-76. Google Scholar

[16]

P. Libermann and C.M. Marle, Symplectic geometry and analytical mechanics, Mathematics and its Applications, 35, D. Reidel Publishing Co., Dordrecht, (1987). Google Scholar

[17]

A. Lichnerowicz, Les variétés de Poisson et leurs algébres de Lie associées, J. Differential Geometry, 12 (1977), 253-300. Google Scholar

[18]

S. Lie, Theorie der Transformationsgruppen I, Math. Ann., 16 (1880), 441-528. Google Scholar

[19]

S. Lie and G. Scheffers, Vorlesungen Über continuierliche Gruppen mit Geometrischen und anderen Anwendungen, Teubner, Leipzig, 1893. Google Scholar

[20]

J. de Lucas and S. Vilariño, $k$-symplectic Lie systems: theory and applications, J. Differential Equations, 258 (2015), 2221-2255. Google Scholar

[21]

C.M. Marle, Jacobi manifolds and Jacobi bundles, in: Symplectic geometry, grupoids and integrable systems, mathematical sciences research institute publications, 20 (1991), 227-246. Google Scholar

[22]

T. Rybicki, On automorphisms of a Jacobi manifold, Univ. Iagel. Acta Math., 38 (2000), 89-98. Google Scholar

[23]

I. Vaisman, Lectures on the Geometry of Poisson manifolds, Birkhäuser Verlag, Basel, 1994. Google Scholar

[24]

N. Weaver, Sub-Riemannian metrics for quantum Heisenberg manifolds, J. Operator Theory, 43 (2000), 223-242. Google Scholar

[25]

P. Winternitz, Lie groups and solutions of nonlinear differential equations, in Nonlinear Phenomena, Lecture Notes in Phys. 189, Springer, Berlin (1983), 263-331. Google Scholar

[1]

Oǧul Esen, Hasan Gümral. Geometry of plasma dynamics II: Lie algebra of Hamiltonian vector fields. Journal of Geometric Mechanics, 2012, 4 (3) : 239-269. doi: 10.3934/jgm.2012.4.239

[2]

Robert I. McLachlan, Ander Murua. The Lie algebra of classical mechanics. Journal of Computational Dynamics, 2019, 6 (2) : 345-360. doi: 10.3934/jcd.2019017

[3]

Richard H. Cushman, Jędrzej Śniatycki. On Lie algebra actions. Discrete & Continuous Dynamical Systems - S, 2020, 13 (4) : 1115-1129. doi: 10.3934/dcdss.2020066

[4]

Franz W. Kamber and Peter W. Michor. Completing Lie algebra actions to Lie group actions. Electronic Research Announcements, 2004, 10: 1-10.

[5]

Giovanni De Matteis, Gianni Manno. Lie algebra symmetry analysis of the Helfrich and Willmore surface shape equations. Communications on Pure & Applied Analysis, 2014, 13 (1) : 453-481. doi: 10.3934/cpaa.2014.13.453

[6]

Pengliang Xu, Xiaomin Tang. Graded post-Lie algebra structures and homogeneous Rota-Baxter operators on the Schrödinger-Virasoro algebra. Electronic Research Archive, 2021, 29 (4) : 2771-2789. doi: 10.3934/era.2021013

[7]

Melvin Leok, Diana Sosa. Dirac structures and Hamilton-Jacobi theory for Lagrangian mechanics on Lie algebroids. Journal of Geometric Mechanics, 2012, 4 (4) : 421-442. doi: 10.3934/jgm.2012.4.421

[8]

José F. Cariñena, Irina Gheorghiu, Eduardo Martínez. Jacobi fields for second-order differential equations on Lie algebroids. Conference Publications, 2015, 2015 (special) : 213-222. doi: 10.3934/proc.2015.0213

[9]

Giulia Cavagnari, Antonio Marigonda. Measure-theoretic Lie brackets for nonsmooth vector fields. Discrete & Continuous Dynamical Systems - S, 2018, 11 (5) : 845-864. doi: 10.3934/dcdss.2018052

[10]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, 2021, 29 (3) : 2445-2456. doi: 10.3934/era.2020123

[11]

Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021020

[12]

Meera G. Mainkar, Cynthia E. Will. Examples of Anosov Lie algebras. Discrete & Continuous Dynamical Systems, 2007, 18 (1) : 39-52. doi: 10.3934/dcds.2007.18.39

[13]

Ville Salo, Ilkka Törmä. Recoding Lie algebraic subshifts. Discrete & Continuous Dynamical Systems, 2021, 41 (2) : 1005-1021. doi: 10.3934/dcds.2020307

[14]

Javier Pérez Álvarez. Invariant structures on Lie groups. Journal of Geometric Mechanics, 2020, 12 (2) : 141-148. doi: 10.3934/jgm.2020007

[15]

André Caldas, Mauro Patrão. Entropy of endomorphisms of Lie groups. Discrete & Continuous Dynamical Systems, 2013, 33 (4) : 1351-1363. doi: 10.3934/dcds.2013.33.1351

[16]

Gerard Thompson. Invariant metrics on Lie groups. Journal of Geometric Mechanics, 2015, 7 (4) : 517-526. doi: 10.3934/jgm.2015.7.517

[17]

Hongliang Chang, Yin Chen, Runxuan Zhang. A generalization on derivations of Lie algebras. Electronic Research Archive, 2021, 29 (3) : 2457-2473. doi: 10.3934/era.2020124

[18]

K. C. H. Mackenzie. Drinfel'd doubles and Ehresmann doubles for Lie algebroids and Lie bialgebroids. Electronic Research Announcements, 1998, 4: 74-87.

[19]

Johannes Huebschmann. On the history of Lie brackets, crossed modules, and Lie-Rinehart algebras. Journal of Geometric Mechanics, 2021  doi: 10.3934/jgm.2021009

[20]

Juan Carlos Marrero, D. Martín de Diego, Diana Sosa. Variational constrained mechanics on Lie affgebroids. Discrete & Continuous Dynamical Systems - S, 2010, 3 (1) : 105-128. doi: 10.3934/dcdss.2010.3.105

 Impact Factor: 

Metrics

  • PDF downloads (103)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]