• Previous Article
    Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition
  • PROC Home
  • This Issue
  • Next Article
    Existence of positive solutions for a system of nonlinear second-order integral boundary value problems
2015, 2015(special): 605-614. doi: 10.3934/proc.2015.0605

Jacobi--Lie systems: Fundamentals and low-dimensional classification

1. 

Department of Physics, University of Burgos, 09001, Burgos, Spain

2. 

Department of Mathematical Methods in Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warszawa, Poland

3. 

Department of Fundamental Physics, University of Salamanca, Plza. de la Merced s/n, 37.008, Salamanca, Spain

Received  September 2014 Revised  March 2015 Published  November 2015

A Lie system is a system of differential equations describing the integral curves of a $t$-dependent vector field taking values in a finite-dimensional real Lie algebra of vector fields, a Vessiot--Guldberg Lie algebra. We define and analyze Lie systems possessing a Vessiot--Guldberg Lie algebra of Hamiltonian vector fields relative to a Jacobi manifold, the hereafter called Jacobi--Lie systems. We classify Jacobi--Lie systems on $\mathbb{R}$ and $\mathbb{R}^2$. Our results shall be illustrated through examples of physical and mathematical interest.
Citation: F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605
References:
[1]

J. Phys. A, 45 (2012), 055101. Google Scholar

[2]

J. Differential Equations, 258 (2015), 2873-2907. Google Scholar

[3]

J. Phys. A, 46 {(2013)}, 285203. Google Scholar

[4]

J. Differential Equations, 275 (2014), 2303-2340. Google Scholar

[5]

Bibliopolis, Naples, 2000. Google Scholar

[6]

Dissertationes Math. (Rozprawy Mat.), 479 (2011), 1-162. Google Scholar

[7]

Int. J. Geom. Methods Mod. Phys., 10 (2013), 1350047. Google Scholar

[8]

Differential Geometry and its Applications, 33 (2014), 177-198. Google Scholar

[9]

Ph.D. Thesis, University of California, Berkeley, 1987. Google Scholar

[10]

Phys. Lett. A, 125 (1987), 240-246. Google Scholar

[11]

P.G. Estévez, F.J Herranz, J. de Lucas and C. Sardón, Lie symmetries for Lie systems: applications to systems of ODEs and PDEs,, Applied Mathematics and Computation, ().   Google Scholar

[12]

Acta Mech., (2015), 17-35. Google Scholar

[13]

Int. J. Geom. Methods Mod. Phys., 8 (2011), 1169-1177. Google Scholar

[14]

Proc. London Math. Soc., 64 (1992), 339-368. Google Scholar

[15]

Uspekhi Mat. Nauk., 31 (1976), 57-76. Google Scholar

[16]

35, D. Reidel Publishing Co., Dordrecht, (1987). Google Scholar

[17]

J. Differential Geometry, 12 (1977), 253-300. Google Scholar

[18]

Math. Ann., 16 (1880), 441-528. Google Scholar

[19]

Teubner, Leipzig, 1893. Google Scholar

[20]

J. Differential Equations, 258 (2015), 2221-2255. Google Scholar

[21]

Symplectic geometry, grupoids and integrable systems, mathematical sciences research institute publications, 20 (1991), 227-246. Google Scholar

[22]

Univ. Iagel. Acta Math., 38 (2000), 89-98. Google Scholar

[23]

Birkhäuser Verlag, Basel, 1994. Google Scholar

[24]

J. Operator Theory, 43 (2000), 223-242. Google Scholar

[25]

Nonlinear Phenomena, Lecture Notes in Phys. 189, Springer, Berlin (1983), 263-331. Google Scholar

show all references

References:
[1]

J. Phys. A, 45 (2012), 055101. Google Scholar

[2]

J. Differential Equations, 258 (2015), 2873-2907. Google Scholar

[3]

J. Phys. A, 46 {(2013)}, 285203. Google Scholar

[4]

J. Differential Equations, 275 (2014), 2303-2340. Google Scholar

[5]

Bibliopolis, Naples, 2000. Google Scholar

[6]

Dissertationes Math. (Rozprawy Mat.), 479 (2011), 1-162. Google Scholar

[7]

Int. J. Geom. Methods Mod. Phys., 10 (2013), 1350047. Google Scholar

[8]

Differential Geometry and its Applications, 33 (2014), 177-198. Google Scholar

[9]

Ph.D. Thesis, University of California, Berkeley, 1987. Google Scholar

[10]

Phys. Lett. A, 125 (1987), 240-246. Google Scholar

[11]

P.G. Estévez, F.J Herranz, J. de Lucas and C. Sardón, Lie symmetries for Lie systems: applications to systems of ODEs and PDEs,, Applied Mathematics and Computation, ().   Google Scholar

[12]

Acta Mech., (2015), 17-35. Google Scholar

[13]

Int. J. Geom. Methods Mod. Phys., 8 (2011), 1169-1177. Google Scholar

[14]

Proc. London Math. Soc., 64 (1992), 339-368. Google Scholar

[15]

Uspekhi Mat. Nauk., 31 (1976), 57-76. Google Scholar

[16]

35, D. Reidel Publishing Co., Dordrecht, (1987). Google Scholar

[17]

J. Differential Geometry, 12 (1977), 253-300. Google Scholar

[18]

Math. Ann., 16 (1880), 441-528. Google Scholar

[19]

Teubner, Leipzig, 1893. Google Scholar

[20]

J. Differential Equations, 258 (2015), 2221-2255. Google Scholar

[21]

Symplectic geometry, grupoids and integrable systems, mathematical sciences research institute publications, 20 (1991), 227-246. Google Scholar

[22]

Univ. Iagel. Acta Math., 38 (2000), 89-98. Google Scholar

[23]

Birkhäuser Verlag, Basel, 1994. Google Scholar

[24]

J. Operator Theory, 43 (2000), 223-242. Google Scholar

[25]

Nonlinear Phenomena, Lecture Notes in Phys. 189, Springer, Berlin (1983), 263-331. Google Scholar

[1]

Yusi Fan, Chenrui Yao, Liangyun Chen. Structure of sympathetic Lie superalgebras. Electronic Research Archive, , () : -. doi: 10.3934/era.2021020

[2]

Yongjian Liu, Qiujian Huang, Zhouchao Wei. Dynamics at infinity and Jacobi stability of trajectories for the Yang-Chen system. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3357-3380. doi: 10.3934/dcdsb.2020235

[3]

Ahmad El Hajj, Hassan Ibrahim, Vivian Rizik. $ BV $ solution for a non-linear Hamilton-Jacobi system. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3273-3293. doi: 10.3934/dcds.2020405

[4]

Fang Li, Jie Pan. On inner Poisson structures of a quantum cluster algebra without coefficients. Electronic Research Archive, , () : -. doi: 10.3934/era.2021021

[5]

Yves Dumont, Frederic Chiroleu. Vector control for the Chikungunya disease. Mathematical Biosciences & Engineering, 2010, 7 (2) : 313-345. doi: 10.3934/mbe.2010.7.313

[6]

Caifang Wang, Tie Zhou. The order of convergence for Landweber Scheme with $\alpha,\beta$-rule. Inverse Problems & Imaging, 2012, 6 (1) : 133-146. doi: 10.3934/ipi.2012.6.133

[7]

M. Phani Sudheer, Ravi S. Nanjundiah, A. S. Vasudeva Murthy. Revisiting the slow manifold of the Lorenz-Krishnamurthy quintet. Discrete & Continuous Dynamical Systems - B, 2006, 6 (6) : 1403-1416. doi: 10.3934/dcdsb.2006.6.1403

[8]

Davi Obata. Symmetries of vector fields: The diffeomorphism centralizer. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021063

[9]

Ágota P. Horváth. Discrete diffusion semigroups associated with Jacobi-Dunkl and exceptional Jacobi polynomials. Communications on Pure & Applied Analysis, 2021, 20 (3) : 975-994. doi: 10.3934/cpaa.2021002

[10]

Alexandr Mikhaylov, Victor Mikhaylov. Dynamic inverse problem for Jacobi matrices. Inverse Problems & Imaging, 2019, 13 (3) : 431-447. doi: 10.3934/ipi.2019021

[11]

Xiaoyi Zhou, Tong Ye, Tony T. Lee. Designing and analysis of a Wi-Fi data offloading strategy catering for the preference of mobile users. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021038

[12]

Fatemeh Abtahi, Zeinab Kamali, Maryam Toutounchi. The BSE concepts for vector-valued Lipschitz algebras. Communications on Pure & Applied Analysis, 2021, 20 (3) : 1171-1186. doi: 10.3934/cpaa.2021011

[13]

Marian Gidea, Rafael de la Llave, Tere M. Seara. A general mechanism of instability in Hamiltonian systems: Skipping along a normally hyperbolic invariant manifold. Discrete & Continuous Dynamical Systems, 2020, 40 (12) : 6795-6813. doi: 10.3934/dcds.2020166

[14]

Dingheng Pi. Periodic orbits for double regularization of piecewise smooth systems with a switching manifold of codimension two. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021080

[15]

Hideaki Takagi. Extension of Littlewood's rule to the multi-period static revenue management model with standby customers. Journal of Industrial & Management Optimization, 2021, 17 (4) : 2181-2202. doi: 10.3934/jimo.2020064

[16]

Akane Kawaharada. Singular function emerging from one-dimensional elementary cellular automaton Rule 150. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021125

[17]

A. K. Misra, Anupama Sharma, Jia Li. A mathematical model for control of vector borne diseases through media campaigns. Discrete & Continuous Dynamical Systems - B, 2013, 18 (7) : 1909-1927. doi: 10.3934/dcdsb.2013.18.1909

[18]

Ahmad Mousavi, Zheming Gao, Lanshan Han, Alvin Lim. Quadratic surface support vector machine with L1 norm regularization. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021046

[19]

Wei Xi Li, Chao Jiang Xu. Subellipticity of some complex vector fields related to the Witten Laplacian. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021047

[20]

Jing Feng, Bin-Guo Wang. An almost periodic Dengue transmission model with age structure and time-delayed input of vector in a patchy environment. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3069-3096. doi: 10.3934/dcdsb.2020220

 Impact Factor: 

Metrics

  • PDF downloads (90)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]