• Previous Article
    Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition
  • PROC Home
  • This Issue
  • Next Article
    Existence of positive solutions for a system of nonlinear second-order integral boundary value problems
2015, 2015(special): 605-614. doi: 10.3934/proc.2015.0605

Jacobi--Lie systems: Fundamentals and low-dimensional classification

1. 

Department of Physics, University of Burgos, 09001, Burgos, Spain

2. 

Department of Mathematical Methods in Physics, University of Warsaw, ul. Pasteura 5, 02-093, Warszawa, Poland

3. 

Department of Fundamental Physics, University of Salamanca, Plza. de la Merced s/n, 37.008, Salamanca, Spain

Received  September 2014 Revised  March 2015 Published  November 2015

A Lie system is a system of differential equations describing the integral curves of a $t$-dependent vector field taking values in a finite-dimensional real Lie algebra of vector fields, a Vessiot--Guldberg Lie algebra. We define and analyze Lie systems possessing a Vessiot--Guldberg Lie algebra of Hamiltonian vector fields relative to a Jacobi manifold, the hereafter called Jacobi--Lie systems. We classify Jacobi--Lie systems on $\mathbb{R}$ and $\mathbb{R}^2$. Our results shall be illustrated through examples of physical and mathematical interest.
Citation: F.J. Herranz, J. de Lucas, C. Sardón. Jacobi--Lie systems: Fundamentals and low-dimensional classification. Conference Publications, 2015, 2015 (special) : 605-614. doi: 10.3934/proc.2015.0605
References:
[1]

R. Angelo, E. Duzzioni and A. Ribeiro, Integrability in time-dependent systems with one degree of freedom,, J. Phys. A, 45 (2012).   Google Scholar

[2]

A. Ballesteros, A. Blasco, F.J. Herranz, J. de Lucas and C. Sardón, Lie-Hamilton systems on the plane: properties, classification and applications,, J. Differential Equations, 258 (2015), 2873.   Google Scholar

[3]

A. Ballesteros, J.F. Cariñena, F.J. Herranz, J. de Lucas and C. Sardón, From constants of motion to superposition rules for Lie-Hamilton systems,, J. Phys. A, 46 (2013).   Google Scholar

[4]

J.F. Cariñena, J. Grabowski, J. de Lucas and C. Sardón, Dirac-Lie systems and Schwarzian equations,, J. Differential Equations, 275 (2014), 2303.   Google Scholar

[5]

J.F. Cariñena, J. Grabowski and G. Marmo, Lie-Scheffers Systems: a Geometric Approach,, Bibliopolis, (2000).   Google Scholar

[6]

J.F. Cariñena and J. de Lucas, Lie systems: theory, generalisations, and applications,, Dissertationes Math. (Rozprawy Mat.), 479 (2011), 1.   Google Scholar

[7]

J.F. Cariñena, J. de Lucas and C. Sardón, Lie-Hamilton systems: theory and applications,, Int. J. Geom. Methods Mod. Phys., 10 (2013).   Google Scholar

[8]

J.N. Clelland and P.J. Vassiliou, A solvable string on a Lorentzian surface,, Differential Geometry and its Applications, 33 (2014), 177.   Google Scholar

[9]

T. Courant, Dirac Manifolds,, Ph.D. Thesis, (1987).   Google Scholar

[10]

I. Dorfman, Dirac structures of integrable evolution equations,, Phys. Lett. A, 125 (1987), 240.   Google Scholar

[11]

P.G. Estévez, F.J Herranz, J. de Lucas and C. Sardón, Lie symmetries for Lie systems: applications to systems of ODEs and PDEs,, Applied Mathematics and Computation, ().   Google Scholar

[12]

Z. Fiala, Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods,, Acta Mech., (2015), 17.   Google Scholar

[13]

R. Flores-Espinoza, Periodic first integrals for Hamiltonian systems of Lie type,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1169.   Google Scholar

[14]

A. González-López, N. Kamran and P.J. Olver, Lie algebras of vector fields in the real plane,, Proc. London Math. Soc., 64 (1992), 339.   Google Scholar

[15]

A. Kirillov, Local Lie algebras,, Uspekhi Mat. Nauk., 31 (1976), 57.   Google Scholar

[16]

P. Libermann and C.M. Marle, Symplectic geometry and analytical mechanics, Mathematics and its Applications,, \textbf{35}, 35 (1987).   Google Scholar

[17]

A. Lichnerowicz, Les variétés de Poisson et leurs algébres de Lie associées,, J. Differential Geometry, 12 (1977), 253.   Google Scholar

[18]

S. Lie, Theorie der Transformationsgruppen I,, Math. Ann., 16 (1880), 441.   Google Scholar

[19]

S. Lie and G. Scheffers, Vorlesungen Über continuierliche Gruppen mit Geometrischen und anderen Anwendungen,, Teubner, (1893).   Google Scholar

[20]

J. de Lucas and S. Vilariño, $k$-symplectic Lie systems: theory and applications,, J. Differential Equations, 258 (2015), 2221.   Google Scholar

[21]

C.M. Marle, Jacobi manifolds and Jacobi bundles, in:, Symplectic geometry, 20 (1991), 227.   Google Scholar

[22]

T. Rybicki, On automorphisms of a Jacobi manifold,, Univ. Iagel. Acta Math., 38 (2000), 89.   Google Scholar

[23]

I. Vaisman, Lectures on the Geometry of Poisson manifolds,, Birkhäuser Verlag, (1994).   Google Scholar

[24]

N. Weaver, Sub-Riemannian metrics for quantum Heisenberg manifolds,, J. Operator Theory, 43 (2000), 223.   Google Scholar

[25]

P. Winternitz, Lie groups and solutions of nonlinear differential equations, in, Nonlinear Phenomena, 189 (1983), 263.   Google Scholar

show all references

References:
[1]

R. Angelo, E. Duzzioni and A. Ribeiro, Integrability in time-dependent systems with one degree of freedom,, J. Phys. A, 45 (2012).   Google Scholar

[2]

A. Ballesteros, A. Blasco, F.J. Herranz, J. de Lucas and C. Sardón, Lie-Hamilton systems on the plane: properties, classification and applications,, J. Differential Equations, 258 (2015), 2873.   Google Scholar

[3]

A. Ballesteros, J.F. Cariñena, F.J. Herranz, J. de Lucas and C. Sardón, From constants of motion to superposition rules for Lie-Hamilton systems,, J. Phys. A, 46 (2013).   Google Scholar

[4]

J.F. Cariñena, J. Grabowski, J. de Lucas and C. Sardón, Dirac-Lie systems and Schwarzian equations,, J. Differential Equations, 275 (2014), 2303.   Google Scholar

[5]

J.F. Cariñena, J. Grabowski and G. Marmo, Lie-Scheffers Systems: a Geometric Approach,, Bibliopolis, (2000).   Google Scholar

[6]

J.F. Cariñena and J. de Lucas, Lie systems: theory, generalisations, and applications,, Dissertationes Math. (Rozprawy Mat.), 479 (2011), 1.   Google Scholar

[7]

J.F. Cariñena, J. de Lucas and C. Sardón, Lie-Hamilton systems: theory and applications,, Int. J. Geom. Methods Mod. Phys., 10 (2013).   Google Scholar

[8]

J.N. Clelland and P.J. Vassiliou, A solvable string on a Lorentzian surface,, Differential Geometry and its Applications, 33 (2014), 177.   Google Scholar

[9]

T. Courant, Dirac Manifolds,, Ph.D. Thesis, (1987).   Google Scholar

[10]

I. Dorfman, Dirac structures of integrable evolution equations,, Phys. Lett. A, 125 (1987), 240.   Google Scholar

[11]

P.G. Estévez, F.J Herranz, J. de Lucas and C. Sardón, Lie symmetries for Lie systems: applications to systems of ODEs and PDEs,, Applied Mathematics and Computation, ().   Google Scholar

[12]

Z. Fiala, Evolution equation of Lie-type for finite deformations, time-discrete integration, and incremental methods,, Acta Mech., (2015), 17.   Google Scholar

[13]

R. Flores-Espinoza, Periodic first integrals for Hamiltonian systems of Lie type,, Int. J. Geom. Methods Mod. Phys., 8 (2011), 1169.   Google Scholar

[14]

A. González-López, N. Kamran and P.J. Olver, Lie algebras of vector fields in the real plane,, Proc. London Math. Soc., 64 (1992), 339.   Google Scholar

[15]

A. Kirillov, Local Lie algebras,, Uspekhi Mat. Nauk., 31 (1976), 57.   Google Scholar

[16]

P. Libermann and C.M. Marle, Symplectic geometry and analytical mechanics, Mathematics and its Applications,, \textbf{35}, 35 (1987).   Google Scholar

[17]

A. Lichnerowicz, Les variétés de Poisson et leurs algébres de Lie associées,, J. Differential Geometry, 12 (1977), 253.   Google Scholar

[18]

S. Lie, Theorie der Transformationsgruppen I,, Math. Ann., 16 (1880), 441.   Google Scholar

[19]

S. Lie and G. Scheffers, Vorlesungen Über continuierliche Gruppen mit Geometrischen und anderen Anwendungen,, Teubner, (1893).   Google Scholar

[20]

J. de Lucas and S. Vilariño, $k$-symplectic Lie systems: theory and applications,, J. Differential Equations, 258 (2015), 2221.   Google Scholar

[21]

C.M. Marle, Jacobi manifolds and Jacobi bundles, in:, Symplectic geometry, 20 (1991), 227.   Google Scholar

[22]

T. Rybicki, On automorphisms of a Jacobi manifold,, Univ. Iagel. Acta Math., 38 (2000), 89.   Google Scholar

[23]

I. Vaisman, Lectures on the Geometry of Poisson manifolds,, Birkhäuser Verlag, (1994).   Google Scholar

[24]

N. Weaver, Sub-Riemannian metrics for quantum Heisenberg manifolds,, J. Operator Theory, 43 (2000), 223.   Google Scholar

[25]

P. Winternitz, Lie groups and solutions of nonlinear differential equations, in, Nonlinear Phenomena, 189 (1983), 263.   Google Scholar

[1]

Wenjun Liu, Yukun Xiao, Xiaoqing Yue. Classification of finite irreducible conformal modules over Lie conformal algebra $ \mathcal{W}(a, b, r) $. Electronic Research Archive, , () : -. doi: 10.3934/era.2020123

[2]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[3]

Wenmeng Geng, Kai Tao. Large deviation theorems for dirichlet determinants of analytic quasi-periodic jacobi operators with Brjuno-Rüssmann frequency. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5305-5335. doi: 10.3934/cpaa.2020240

[4]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[5]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[6]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[7]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[8]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[9]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[10]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[11]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[12]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[13]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[14]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[15]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[16]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

 Impact Factor: 

Metrics

  • PDF downloads (80)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]