
Previous Article
JacobiLie systems: Fundamentals and lowdimensional classification
 PROC Home
 This Issue

Next Article
Optimal control and stability analysis of an epidemic model with education campaign and treatment
Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition
1.  Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, Kentucky 40475, United States, United States 
References:
show all references
References:
[1] 
Fangfang Dong, Yunmei Chen. A fractionalorder derivative based variational framework for image denoising. Inverse Problems & Imaging, 2016, 10 (1) : 2750. doi: 10.3934/ipi.2016.10.27 
[2] 
Ekta Mittal, Sunil Joshi. Note on a $ k $generalised fractional derivative. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 797804. doi: 10.3934/dcdss.2020045 
[3] 
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Zakia Hammouch, Dumitru Baleanu. A fractional model for the dynamics of tuberculosis infection using CaputoFabrizio derivative. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 975993. doi: 10.3934/dcdss.2020057 
[4] 
Saif Ullah, Muhammad Altaf Khan, Muhammad Farooq, Ebraheem O. Alzahrani. A fractional model for the dynamics of tuberculosis (TB) using AtanganaBaleanu derivative. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 937956. doi: 10.3934/dcdss.2020055 
[5] 
Chun Wang, TianZhou Xu. Stability of the nonlinear fractional differential equations with the rightsided RiemannLiouville fractional derivative. Discrete & Continuous Dynamical Systems  S, 2017, 10 (3) : 505521. doi: 10.3934/dcdss.2017025 
[6] 
Ilknur Koca. Numerical analysis of coupled fractional differential equations with AtanganaBaleanu fractional derivative. Discrete & Continuous Dynamical Systems  S, 2019, 12 (3) : 475486. doi: 10.3934/dcdss.2019031 
[7] 
Krunal B. Kachhia. Comparative study of fractional FokkerPlanck equations with various fractional derivative operators. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 741754. doi: 10.3934/dcdss.2020041 
[8] 
Fahd Jarad, Sugumaran Harikrishnan, Kamal Shah, Kuppusamy Kanagarajan. Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 723739. doi: 10.3934/dcdss.2020040 
[9] 
Diane Denny. A unique positive solution to a system of semilinear elliptic equations. Conference Publications, 2013, 2013 (special) : 193195. doi: 10.3934/proc.2013.2013.193 
[10] 
GUANGBING LI. Positive solution for quasilinear Schrödinger equations with a parameter. Communications on Pure & Applied Analysis, 2015, 14 (5) : 18031816. doi: 10.3934/cpaa.2015.14.1803 
[11] 
Roberto Garrappa, Eleonora Messina, Antonia Vecchio. Effect of perturbation in the numerical solution of fractional differential equations. Discrete & Continuous Dynamical Systems  B, 2018, 23 (7) : 26792694. doi: 10.3934/dcdsb.2017188 
[12] 
Pei Ma, Yan Li, Jihui Zhang. Symmetry and nonexistence of positive solutions for fractional systems. Communications on Pure & Applied Analysis, 2018, 17 (3) : 10531070. doi: 10.3934/cpaa.2018051 
[13] 
John R. Graef, Lingju Kong, Qingkai Kong, Min Wang. Positive solutions of nonlocal fractional boundary value problems. Conference Publications, 2013, 2013 (special) : 283290. doi: 10.3934/proc.2013.2013.283 
[14] 
Daria Bugajewska, Mirosława Zima. On positive solutions of nonlinear fractional differential equations. Conference Publications, 2003, 2003 (Special) : 141146. doi: 10.3934/proc.2003.2003.141 
[15] 
Yueling Jia, Zhaohui Huo. Inviscid limit behavior of solution for the multidimensional derivative complex GinzburgLandau equation. Kinetic & Related Models, 2014, 7 (1) : 5777. doi: 10.3934/krm.2014.7.57 
[16] 
Dariusz Idczak, Rafał Kamocki. Existence of optimal solutions to lagrange problem for a fractional nonlinear control system with riemannliouville derivative. Mathematical Control & Related Fields, 2017, 7 (3) : 449464. doi: 10.3934/mcrf.2017016 
[17] 
Kolade M. Owolabi, Abdon Atangana. Highorder solvers for spacefractional differential equations with Riesz derivative. Discrete & Continuous Dynamical Systems  S, 2019, 12 (3) : 567590. doi: 10.3934/dcdss.2019037 
[18] 
Abbes Benaissa, Abderrahmane Kasmi. Wellposedeness and energy decay of solutions to a bresse system with a boundary dissipation of fractional derivative type. Discrete & Continuous Dynamical Systems  B, 2018, 23 (10) : 43614395. doi: 10.3934/dcdsb.2018168 
[19] 
Mehmet Yavuz, Necati Özdemir. Comparing the new fractional derivative operators involving exponential and MittagLeffler kernel. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 9951006. doi: 10.3934/dcdss.2020058 
[20] 
Jean Daniel Djida, Juan J. Nieto, Iván Area. Parabolic problem with fractional time derivative with nonlocal and nonsingular MittagLeffler kernel. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 609627. doi: 10.3934/dcdss.2020033 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]