2015, 2015(special): 615-620. doi: 10.3934/proc.2015.0615

Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition

1. 

Department of Mathematics and Statistics, Eastern Kentucky University, Richmond, Kentucky 40475, United States, United States

Received  September 2014 Revised  May 2015 Published  November 2015

In this paper, we apply Krasnosel'skii's cone expansion and compression fixed point theorem to show the existence of at least one positive solution to the nonlinear fractional boundary value problem $D^\alpha_{0^+} u + a(t)f(u)=0$, $0 < t < 1$, $1 < \alpha \le 2$, satisfying boundary conditions $u(0)=D^\beta_{0^+} u(1)=0$, $0\le\beta\le1$.
Citation: Christina A. Hollon, Jeffrey T. Neugebauer. Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition. Conference Publications, 2015, 2015 (special) : 615-620. doi: 10.3934/proc.2015.0615
References:
[1]

B. Ahmad and J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions,, \emph{Fixed Point Theory}, 13 (2012), 329.   Google Scholar

[2]

Z. Bai and H. Lu, Positive solutions for boundary value problems of nonlinear fractional differential equations,, \emph{J. Math. Anal. Appl.}, 311 (2005), 495.   Google Scholar

[3]

V. Daftardar-Genjji, Positive solutions of a system of non-autonomous nonlinear fractional differential equations,, \emph{J. Math. Anal. Appl.}, 302 (2004), 56.   Google Scholar

[4]

K. Diethelm, The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo Type,, Lecture Notes in Mathematics, (2004).   Google Scholar

[5]

P. W. Eloe and J. T. Neugebauer, Conjugate points for fractional differential equations,, \emph{Fract. Calc. Appl. Anal.}, 17 (2014), 855.   Google Scholar

[6]

P. W. Eloe, J. W. Lyons, and J. T. Neugebauer, An ordering on Green's functions for a family of two-point boundary value problems for fractional differential equations,, \emph{Commun. Appl. Anal.}, 19 (2015), 453.   Google Scholar

[7]

J. R. Graef and X. Liu, Existence of positive solutions of fractional boundary value problems involving bounded linear operators,, \emph{J. Nonlinear Funct. Anal.}, 2014 (2014), 1.   Google Scholar

[8]

E. R. Kaufmann and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation,, \emph{Electron. J. Qual. Theory Differ. Equ.}, 17 (2014), 855.   Google Scholar

[9]

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North Holland Math. Stud., (2006).   Google Scholar

[10]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, (English), Translated by A. H. Armstrong,, A Pergamon Press Book, (1964).   Google Scholar

[11]

R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces,, \emph{Indiana Univ. Math. J.}, 28 (1979), 673.   Google Scholar

[12]

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications,, Gordon and Breach, (1993).   Google Scholar

[13]

G. Wang, S. K. Ntouyas, and L. Zhang, Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument,, \emph{Adv. Difference Equ.}, 2011 (2011).   Google Scholar

[14]

S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation,, \emph{J. Math. Anal. Appl.}, 1 (2013), 12.   Google Scholar

[15]

S. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations,, \emph{Electron. J. Diff. Eqns.}, 2006 (2006), 1.   Google Scholar

show all references

References:
[1]

B. Ahmad and J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions,, \emph{Fixed Point Theory}, 13 (2012), 329.   Google Scholar

[2]

Z. Bai and H. Lu, Positive solutions for boundary value problems of nonlinear fractional differential equations,, \emph{J. Math. Anal. Appl.}, 311 (2005), 495.   Google Scholar

[3]

V. Daftardar-Genjji, Positive solutions of a system of non-autonomous nonlinear fractional differential equations,, \emph{J. Math. Anal. Appl.}, 302 (2004), 56.   Google Scholar

[4]

K. Diethelm, The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo Type,, Lecture Notes in Mathematics, (2004).   Google Scholar

[5]

P. W. Eloe and J. T. Neugebauer, Conjugate points for fractional differential equations,, \emph{Fract. Calc. Appl. Anal.}, 17 (2014), 855.   Google Scholar

[6]

P. W. Eloe, J. W. Lyons, and J. T. Neugebauer, An ordering on Green's functions for a family of two-point boundary value problems for fractional differential equations,, \emph{Commun. Appl. Anal.}, 19 (2015), 453.   Google Scholar

[7]

J. R. Graef and X. Liu, Existence of positive solutions of fractional boundary value problems involving bounded linear operators,, \emph{J. Nonlinear Funct. Anal.}, 2014 (2014), 1.   Google Scholar

[8]

E. R. Kaufmann and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation,, \emph{Electron. J. Qual. Theory Differ. Equ.}, 17 (2014), 855.   Google Scholar

[9]

A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations,, North Holland Math. Stud., (2006).   Google Scholar

[10]

M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, (English), Translated by A. H. Armstrong,, A Pergamon Press Book, (1964).   Google Scholar

[11]

R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces,, \emph{Indiana Univ. Math. J.}, 28 (1979), 673.   Google Scholar

[12]

S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications,, Gordon and Breach, (1993).   Google Scholar

[13]

G. Wang, S. K. Ntouyas, and L. Zhang, Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument,, \emph{Adv. Difference Equ.}, 2011 (2011).   Google Scholar

[14]

S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation,, \emph{J. Math. Anal. Appl.}, 1 (2013), 12.   Google Scholar

[15]

S. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations,, \emph{Electron. J. Diff. Eqns.}, 2006 (2006), 1.   Google Scholar

[1]

S. Sadeghi, H. Jafari, S. Nemati. Solving fractional Advection-diffusion equation using Genocchi operational matrix based on Atangana-Baleanu derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020435

[2]

Min Xi, Wenyu Sun, Jun Chen. Survey of derivative-free optimization. Numerical Algebra, Control & Optimization, 2020, 10 (4) : 537-555. doi: 10.3934/naco.2020050

[3]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[4]

Meng Chen, Yong Hu, Matteo Penegini. On projective threefolds of general type with small positive geometric genus. Electronic Research Archive, , () : -. doi: 10.3934/era.2020117

[5]

Yi An, Bo Li, Lei Wang, Chao Zhang, Xiaoli Zhou. Calibration of a 3D laser rangefinder and a camera based on optimization solution. Journal of Industrial & Management Optimization, 2021, 17 (1) : 427-445. doi: 10.3934/jimo.2019119

[6]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[7]

Mokhtar Bouloudene, Manar A. Alqudah, Fahd Jarad, Yassine Adjabi, Thabet Abdeljawad. Nonlinear singular $ p $ -Laplacian boundary value problems in the frame of conformable derivative. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020442

[8]

Zhilei Liang, Jiangyu Shuai. Existence of strong solution for the Cauchy problem of fully compressible Navier-Stokes equations in two dimensions. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020348

[9]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[10]

Hai-Feng Huo, Shi-Ke Hu, Hong Xiang. Traveling wave solution for a diffusion SEIR epidemic model with self-protection and treatment. Electronic Research Archive, , () : -. doi: 10.3934/era.2020118

[11]

Sihem Guerarra. Maximum and minimum ranks and inertias of the Hermitian parts of the least rank solution of the matrix equation AXB = C. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 75-86. doi: 10.3934/naco.2020016

[12]

Anh Tuan Duong, Phuong Le, Nhu Thang Nguyen. Symmetry and nonexistence results for a fractional Choquard equation with weights. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 489-505. doi: 10.3934/dcds.2020265

[13]

Lingwei Ma, Zhenqiu Zhang. Monotonicity for fractional Laplacian systems in unbounded Lipschitz domains. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 537-552. doi: 10.3934/dcds.2020268

[14]

Nguyen Thi Kim Son, Nguyen Phuong Dong, Le Hoang Son, Alireza Khastan, Hoang Viet Long. Complete controllability for a class of fractional evolution equations with uncertainty. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020104

[15]

Alessandro Carbotti, Giovanni E. Comi. A note on Riemann-Liouville fractional Sobolev spaces. Communications on Pure & Applied Analysis, 2021, 20 (1) : 17-54. doi: 10.3934/cpaa.2020255

[16]

Oussama Landoulsi. Construction of a solitary wave solution of the nonlinear focusing schrödinger equation outside a strictly convex obstacle in the $ L^2 $-supercritical case. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 701-746. doi: 10.3934/dcds.2020298

[17]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[18]

Yahia Zare Mehrjerdi. A new methodology for solving bi-criterion fractional stochastic programming. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020054

[19]

Serena Dipierro, Benedetta Pellacci, Enrico Valdinoci, Gianmaria Verzini. Time-fractional equations with reaction terms: Fundamental solutions and asymptotics. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 257-275. doi: 10.3934/dcds.2020137

[20]

Bahaaeldin Abdalla, Thabet Abdeljawad. Oscillation criteria for kernel function dependent fractional dynamic equations. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020443

 Impact Factor: 

Metrics

  • PDF downloads (134)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]