\`x^2+y_1+z_12^34\`
Advanced Search
Article Contents
Article Contents

Positive solutions of a fractional boundary value problem with a fractional derivative boundary condition

Abstract Related Papers Cited by
  • In this paper, we apply Krasnosel'skii's cone expansion and compression fixed point theorem to show the existence of at least one positive solution to the nonlinear fractional boundary value problem $D^\alpha_{0^+} u + a(t)f(u)=0$, $0 < t < 1$, $1 < \alpha \le 2$, satisfying boundary conditions $u(0)=D^\beta_{0^+} u(1)=0$, $0\le\beta\le1$.
    Mathematics Subject Classification: Primary: 34B18, 26A33; Secondary: 34B15.

    Citation:

    \begin{equation} \\ \end{equation}
  • [1]

    B. Ahmad and J. J. Nieto, Riemann-Liouville fractional differential equations with fractional boundary conditions, Fixed Point Theory, 13 (2012), 329-336.

    [2]

    Z. Bai and H. Lu, Positive solutions for boundary value problems of nonlinear fractional differential equations, J. Math. Anal. Appl., 311 (2005), 495-505.

    [3]

    V. Daftardar-Genjji, Positive solutions of a system of non-autonomous nonlinear fractional differential equations, J. Math. Anal. Appl., 302 (2004), 56-64.

    [4]

    K. Diethelm, The Analysis of Fractional Differential Equations. An Application-oriented Exposition Using Differential Operators of Caputo Type, Lecture Notes in Mathematics, 2004, Springer-Verlag, Berlin, 2010.

    [5]

    P. W. Eloe and J. T. Neugebauer, Conjugate points for fractional differential equations, Fract. Calc. Appl. Anal., 17 (2014), 855-871.

    [6]

    P. W. Eloe, J. W. Lyons, and J. T. Neugebauer, An ordering on Green's functions for a family of two-point boundary value problems for fractional differential equations, Commun. Appl. Anal., 19 (2015), 453-462.

    [7]

    J. R. Graef and X. Liu, Existence of positive solutions of fractional boundary value problems involving bounded linear operators, J. Nonlinear Funct. Anal., 2014 (2014), 1-23.

    [8]

    E. R. Kaufmann and E. Mboumi, Positive solutions of a boundary value problem for a nonlinear fractional differential equation, Electron. J. Qual. Theory Differ. Equ., 17 (2014), 855-871.

    [9]

    A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North Holland Math. Stud., vol. 204, Elsevier Science B.V., Amsterdam, 2006.

    [10]

    M. A. Krasnosel'skii, Topological Methods in the Theory of Nonlinear Integral Equations, (English), Translated by A. H. Armstrong, A Pergamon Press Book, MacMillan, New York, 1964.

    [11]

    R. W. Leggett and L. R. Williams, Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J., 28 (1979), 673-688.

    [12]

    S. G. Samko, A. A. Kilbas, and O. I. Marichev, Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon, 1993.

    [13]

    G. Wang, S. K. Ntouyas, and L. Zhang, Positive solutions of the three-point boundary value problem for fractional-order differential equations with an advanced argument, Adv. Difference Equ., 2011 (2011), Article ID 2.

    [14]

    S. Zhang, The existence of a positive solution for a nonlinear fractional differential equation, J. Math. Anal. Appl., 1 (2013), 12-22.

    [15]

    S. Zhang, Positive solutions for boundary value problems of nonlinear fractional differential equations, Electron. J. Diff. Eqns., 2006 (2006), 1-12.

  • 加载中
Open Access Under a Creative Commons license
SHARE

Article Metrics

HTML views() PDF downloads(354) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return