• Previous Article
    Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field
  • PROC Home
  • This Issue
  • Next Article
    Optimal control and stability analysis of an epidemic model with education campaign and treatment
2015, 2015(special): 635-643. doi: 10.3934/proc.2015.0635

An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

Received  September 2014 Revised  February 2015 Published  November 2015

This paper mainly considers the uniform bound on solutions of non-degenerate Keller-Segel systems on the whole space. In the case that the domain is bounded, Tao-Winkler (2012) proved existence of globally bounded solutions of non-degenerate systems. More precisely, they gave the result on boundedness in quasilinear parabolic equations by using the $L^p$-bounds on the solution for some large $p>1$. In Ishida-Yokota (2012), they dealt with the same system as this paper on the whole space, however, their $L^\infty$-estimate possibly grows up even if the solutions have the uniform bounds in $L^p(\mathbb{R}^N)$ for all $p\in[1,\infty)$. The present work asserts the uniform in time $L^\infty$-bound on solutions. Moreover, this paper covers the degenerate Keller-Segel systems and constructs the uniformly bounded weak solutions.
Citation: Sachiko Ishida. An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems. Conference Publications, 2015, 2015 (special) : 635-643. doi: 10.3934/proc.2015.0635
References:
[1]

J. Differential Equations, 252 (2012), 5832-5851.  Google Scholar

[2]

Acta Appl. Math., 129 (2014), 135-146.  Google Scholar

[3]

Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 24 (1997), 633-683.  Google Scholar

[4]

J. Math. Biol., 58 (2009), 183-217.  Google Scholar

[5]

Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2537-2568.  Google Scholar

[6]

J. Differential Equations, 252 (2012), 2469-2491.  Google Scholar

[7]

Discrete Contin. Dyn. Syst. Supplements, 2013 (2013), 345-354. Google Scholar

[8]

Discrete Contin. Dyn. Syst. Ser. B, 18 (2013) 2569-2596.  Google Scholar

[9]

J. Theor. Biol., 26 (1970), 399-415. Google Scholar

[10]

Nonlinear Anal., 47 (2001), 777-787.  Google Scholar

[11]

Funkcial. Ekvac., 40 (1997), 411-433.  Google Scholar

[12]

Funkcial. Ekvac., 46 (2003), 383-407.  Google Scholar

[13]

Funkcial. Ekvac., 44 (2001), 441-469.  Google Scholar

[14]

Mathematical Surveys and Monographs, 49 American Mathematical Society, Providence, RI, (1997). Google Scholar

[15]

J. Differential Equations, 227 (2006), 333-364.  Google Scholar

[16]

J. Differential Equations, 250 (2011), 3047-3087.  Google Scholar

[17]

J. Differential Equations, 252 (2012), 692-715.  Google Scholar

[18]

Math. Nachr., 283 (2010), 1664-1673.  Google Scholar

[19]

J. Differential Equations, 248 (2010), 2889-2905.  Google Scholar

[20]

J. Math. Pures Appl., 100 (2013), 748-767.  Google Scholar

show all references

References:
[1]

J. Differential Equations, 252 (2012), 5832-5851.  Google Scholar

[2]

Acta Appl. Math., 129 (2014), 135-146.  Google Scholar

[3]

Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 24 (1997), 633-683.  Google Scholar

[4]

J. Math. Biol., 58 (2009), 183-217.  Google Scholar

[5]

Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2537-2568.  Google Scholar

[6]

J. Differential Equations, 252 (2012), 2469-2491.  Google Scholar

[7]

Discrete Contin. Dyn. Syst. Supplements, 2013 (2013), 345-354. Google Scholar

[8]

Discrete Contin. Dyn. Syst. Ser. B, 18 (2013) 2569-2596.  Google Scholar

[9]

J. Theor. Biol., 26 (1970), 399-415. Google Scholar

[10]

Nonlinear Anal., 47 (2001), 777-787.  Google Scholar

[11]

Funkcial. Ekvac., 40 (1997), 411-433.  Google Scholar

[12]

Funkcial. Ekvac., 46 (2003), 383-407.  Google Scholar

[13]

Funkcial. Ekvac., 44 (2001), 441-469.  Google Scholar

[14]

Mathematical Surveys and Monographs, 49 American Mathematical Society, Providence, RI, (1997). Google Scholar

[15]

J. Differential Equations, 227 (2006), 333-364.  Google Scholar

[16]

J. Differential Equations, 250 (2011), 3047-3087.  Google Scholar

[17]

J. Differential Equations, 252 (2012), 692-715.  Google Scholar

[18]

Math. Nachr., 283 (2010), 1664-1673.  Google Scholar

[19]

J. Differential Equations, 248 (2010), 2889-2905.  Google Scholar

[20]

J. Math. Pures Appl., 100 (2013), 748-767.  Google Scholar

[1]

Hai-Yang Jin, Zhi-An Wang. The Keller-Segel system with logistic growth and signal-dependent motility. Discrete & Continuous Dynamical Systems - B, 2021, 26 (6) : 3023-3041. doi: 10.3934/dcdsb.2020218

[2]

Yumi Yahagi. Construction of unique mild solution and continuity of solution for the small initial data to 1-D Keller-Segel system. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021099

[3]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2601-2617. doi: 10.3934/dcds.2020376

[4]

Xu Pan, Liangchen Wang. Boundedness and asymptotic stability in a quasilinear two-species chemotaxis system with nonlinear signal production. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021064

[5]

Qigang Yuan, Jingli Ren. Periodic forcing on degenerate Hopf bifurcation. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2857-2877. doi: 10.3934/dcdsb.2020208

[6]

Wen Si. Response solutions for degenerate reversible harmonic oscillators. Discrete & Continuous Dynamical Systems, 2021, 41 (8) : 3951-3972. doi: 10.3934/dcds.2021023

[7]

Nikolaos Roidos. Expanding solutions of quasilinear parabolic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021026

[8]

Françoise Demengel. Ergodic pairs for degenerate pseudo Pucci's fully nonlinear operators. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3465-3488. doi: 10.3934/dcds.2021004

[9]

Guanming Gai, Yuanyuan Nie, Chunpeng Wang. A degenerate elliptic problem from subsonic-sonic flows in convergent nozzles. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2021070

[10]

Lu Xu, Chunlai Mu, Qiao Xin. Global boundedness of solutions to the two-dimensional forager-exploiter model with logistic source. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3031-3043. doi: 10.3934/dcds.2020396

[11]

Haiyan Wang. Existence and nonexistence of positive radial solutions for quasilinear systems. Conference Publications, 2009, 2009 (Special) : 810-817. doi: 10.3934/proc.2009.2009.810

[12]

Miguel R. Nuñez-Chávez. Controllability under positive constraints for quasilinear parabolic PDEs. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021024

[13]

Flank D. M. Bezerra, Jacson Simsen, Mariza Stefanello Simsen. Convergence of quasilinear parabolic equations to semilinear equations. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3823-3834. doi: 10.3934/dcdsb.2020258

[14]

Wentao Huang, Jianlin Xiang. Soliton solutions for a quasilinear Schrödinger equation with critical exponent. Communications on Pure & Applied Analysis, 2016, 15 (4) : 1309-1333. doi: 10.3934/cpaa.2016.15.1309

[15]

Zhouxin Li, Yimin Zhang. Ground states for a class of quasilinear Schrödinger equations with vanishing potentials. Communications on Pure & Applied Analysis, 2021, 20 (2) : 933-954. doi: 10.3934/cpaa.2020298

[16]

Yimin Zhang, Youjun Wang, Yaotian Shen. Solutions for quasilinear Schrödinger equations with critical Sobolev-Hardy exponents. Communications on Pure & Applied Analysis, 2011, 10 (4) : 1037-1054. doi: 10.3934/cpaa.2011.10.1037

[17]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2021, 14 (5) : 1779-1799. doi: 10.3934/dcdss.2020454

[18]

Minh-Phuong Tran, Thanh-Nhan Nguyen. Pointwise gradient bounds for a class of very singular quasilinear elliptic equations. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021043

[19]

Agnid Banerjee, Ramesh Manna. Carleman estimates for a class of variable coefficient degenerate elliptic operators with applications to unique continuation. Discrete & Continuous Dynamical Systems, 2021  doi: 10.3934/dcds.2021070

[20]

Zhisong Chen, Shong-Iee Ivan Su. Assembly system with omnichannel coordination. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021047

 Impact Factor: 

Metrics

  • PDF downloads (96)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]