[1]

T. Cieślak and C. Stinner, Finitetime blowup and globalintime unbounded solutions to a parabolicparabolic quasilinear KellerSegel system in higher dimensions, J. Differential Equations, 252 (2012), 58325851.

[2]

T. Cieślak and C. Stinner, Finitetime blowup in a supercritical quasilinear parabolicparabolic KellerSegel system in dimension 2, Acta Appl. Math., 129 (2014), 135146.

[3]

M. A. Herrero and J. J. L. Velázquez, A blowup mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 24 (1997), 633683.

[4]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183217.

[5]

S. Ishida, Y. Maeda and T. Yokota, Gradient estimate for solutions to quasilinear nondegenerate KellerSegel systems on $\mathbbR^N$, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 25372568.

[6]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate KellerSegel systems of parabolicparabolic type with small data, J. Differential Equations, 252 (2012), 24692491.

[7]

S. Ishida and T. Yokota, Remarks on the global existence of weak solutions to quasilinear degenerate KellerSegel systems, Discrete Contin. Dyn. Syst. Supplements, 2013 (2013), 345354.

[8]

S. Ishida and T. Yokota, Blowup in finite or infinite time for quasilinear degenerate KellerSegel systems of parabolicparabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013) 25692596.

[9]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399415.

[10]

T. Nagai, Global existence and blowup of solutions to a chemotaxis system, Nonlinear Anal., 47 (2001), 777787.

[11]

T. Nagai, T. Senba and K. Yoshida, Application of the TrudingerMoser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411433.

[12]

T. Nagai, R. Syukuinn and M. Umesako, Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in $\mathbbR^N$, Funkcial. Ekvac., 46 (2003), 383407.

[13]

K. Osaki and A. Yagi, Finite dimensional attractor for onedimensional KellerSegel equations, Funkcial. Ekvac., 44 (2001), 441469.

[14]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49 American Mathematical Society, Providence, RI, (1997).

[15]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate KellerSegel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333364.

[16]

Y. Sugiyama and Y. Yahagi, Extinction, decay and blowup for KellerSegel systems of fast diffusion type, J. Differential Equations, 250 (2011), 30473087.

[17]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolicparabolic KellerSegel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692715.

[18]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signaldependent sensitivity, Math. Nachr., 283 (2010), 16641673.

[19]

M. Winkler, Aggregation vs. global diffusive behavior in the higherdimensional KellerSegel model, J. Differential Equations, 248 (2010), 28892905.

[20]

M. Winkler, Finitetime blowup in the higherdimensional parabolicparabolic KellerSegel system, J. Math. Pures Appl., 100 (2013), 748767.
