• Previous Article
    Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field
  • PROC Home
  • This Issue
  • Next Article
    Optimal control and stability analysis of an epidemic model with education campaign and treatment
2015, 2015(special): 635-643. doi: 10.3934/proc.2015.0635

An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems

1. 

Department of Mathematics, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo 162-8601

Received  September 2014 Revised  February 2015 Published  November 2015

This paper mainly considers the uniform bound on solutions of non-degenerate Keller-Segel systems on the whole space. In the case that the domain is bounded, Tao-Winkler (2012) proved existence of globally bounded solutions of non-degenerate systems. More precisely, they gave the result on boundedness in quasilinear parabolic equations by using the $L^p$-bounds on the solution for some large $p>1$. In Ishida-Yokota (2012), they dealt with the same system as this paper on the whole space, however, their $L^\infty$-estimate possibly grows up even if the solutions have the uniform bounds in $L^p(\mathbb{R}^N)$ for all $p\in[1,\infty)$. The present work asserts the uniform in time $L^\infty$-bound on solutions. Moreover, this paper covers the degenerate Keller-Segel systems and constructs the uniformly bounded weak solutions.
Citation: Sachiko Ishida. An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems. Conference Publications, 2015, 2015 (special) : 635-643. doi: 10.3934/proc.2015.0635
References:
[1]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832.   Google Scholar

[2]

T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2,, Acta Appl. Math., 129 (2014), 135.   Google Scholar

[3]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633.   Google Scholar

[4]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.   Google Scholar

[5]

S. Ishida, Y. Maeda and T. Yokota, Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbbR^N$,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2537.   Google Scholar

[6]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data,, J. Differential Equations, 252 (2012), 2469.   Google Scholar

[7]

S. Ishida and T. Yokota, Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems,, Discrete Contin. Dyn. Syst. Supplements, 2013 (2013), 345.   Google Scholar

[8]

S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569.   Google Scholar

[9]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.   Google Scholar

[10]

T. Nagai, Global existence and blowup of solutions to a chemotaxis system,, Nonlinear Anal., 47 (2001), 777.   Google Scholar

[11]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkcial. Ekvac., 40 (1997), 411.   Google Scholar

[12]

T. Nagai, R. Syukuinn and M. Umesako, Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in $\mathbbR^N$,, Funkcial. Ekvac., 46 (2003), 383.   Google Scholar

[13]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations,, Funkcial. Ekvac., 44 (2001), 441.   Google Scholar

[14]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,, Mathematical Surveys and Monographs, 49 (1997).   Google Scholar

[15]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term,, J. Differential Equations, 227 (2006), 333.   Google Scholar

[16]

Y. Sugiyama and Y. Yahagi, Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type,, J. Differential Equations, 250 (2011), 3047.   Google Scholar

[17]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.   Google Scholar

[18]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity,, Math. Nachr., 283 (2010), 1664.   Google Scholar

[19]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.   Google Scholar

[20]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748.   Google Scholar

show all references

References:
[1]

T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions,, J. Differential Equations, 252 (2012), 5832.   Google Scholar

[2]

T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2,, Acta Appl. Math., 129 (2014), 135.   Google Scholar

[3]

M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model,, Ann. Scuola Norm. Sup. Pisa Cl. Sci., 24 (1997), 633.   Google Scholar

[4]

T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis,, J. Math. Biol., 58 (2009), 183.   Google Scholar

[5]

S. Ishida, Y. Maeda and T. Yokota, Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbbR^N$,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2537.   Google Scholar

[6]

S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data,, J. Differential Equations, 252 (2012), 2469.   Google Scholar

[7]

S. Ishida and T. Yokota, Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems,, Discrete Contin. Dyn. Syst. Supplements, 2013 (2013), 345.   Google Scholar

[8]

S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type,, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2569.   Google Scholar

[9]

E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability,, J. Theor. Biol., 26 (1970), 399.   Google Scholar

[10]

T. Nagai, Global existence and blowup of solutions to a chemotaxis system,, Nonlinear Anal., 47 (2001), 777.   Google Scholar

[11]

T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis,, Funkcial. Ekvac., 40 (1997), 411.   Google Scholar

[12]

T. Nagai, R. Syukuinn and M. Umesako, Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in $\mathbbR^N$,, Funkcial. Ekvac., 46 (2003), 383.   Google Scholar

[13]

K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations,, Funkcial. Ekvac., 44 (2001), 441.   Google Scholar

[14]

R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations,, Mathematical Surveys and Monographs, 49 (1997).   Google Scholar

[15]

Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term,, J. Differential Equations, 227 (2006), 333.   Google Scholar

[16]

Y. Sugiyama and Y. Yahagi, Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type,, J. Differential Equations, 250 (2011), 3047.   Google Scholar

[17]

Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity,, J. Differential Equations, 252 (2012), 692.   Google Scholar

[18]

M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity,, Math. Nachr., 283 (2010), 1664.   Google Scholar

[19]

M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model,, J. Differential Equations, 248 (2010), 2889.   Google Scholar

[20]

M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system,, J. Math. Pures Appl., 100 (2013), 748.   Google Scholar

[1]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

[2]

Mehdi Bastani, Davod Khojasteh Salkuyeh. On the GSOR iteration method for image restoration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 27-43. doi: 10.3934/naco.2020013

[3]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[4]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[5]

Parikshit Upadhyaya, Elias Jarlebring, Emanuel H. Rubensson. A density matrix approach to the convergence of the self-consistent field iteration. Numerical Algebra, Control & Optimization, 2021, 11 (1) : 99-115. doi: 10.3934/naco.2020018

[6]

Yongxiu Shi, Haitao Wan. Refined asymptotic behavior and uniqueness of large solutions to a quasilinear elliptic equation in a borderline case. Electronic Research Archive, , () : -. doi: 10.3934/era.2020119

[7]

Abdelghafour Atlas, Mostafa Bendahmane, Fahd Karami, Driss Meskine, Omar Oubbih. A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020321

[8]

Manil T. Mohan. First order necessary conditions of optimality for the two dimensional tidal dynamics system. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020045

[9]

Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Salim A. Messaoudi. New general decay result for a system of viscoelastic wave equations with past history. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020273

[10]

Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of a Sobolev type impulsive functional evolution system in Banach spaces. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020049

[11]

Helmut Abels, Andreas Marquardt. On a linearized Mullins-Sekerka/Stokes system for two-phase flows. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020467

[12]

Yichen Zhang, Meiqiang Feng. A coupled $ p $-Laplacian elliptic system: Existence, uniqueness and asymptotic behavior. Electronic Research Archive, 2020, 28 (4) : 1419-1438. doi: 10.3934/era.2020075

[13]

Youshan Tao, Michael Winkler. Critical mass for infinite-time blow-up in a haptotaxis system with nonlinear zero-order interaction. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 439-454. doi: 10.3934/dcds.2020216

[14]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[15]

Denis Bonheure, Silvia Cingolani, Simone Secchi. Concentration phenomena for the Schrödinger-Poisson system in $ \mathbb{R}^2 $. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020447

[16]

Xavier Carvajal, Liliana Esquivel, Raphael Santos. On local well-posedness and ill-posedness results for a coupled system of mkdv type equations. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020382

[17]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[18]

Mathew Gluck. Classification of solutions to a system of $ n^{\rm th} $ order equations on $ \mathbb R^n $. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5413-5436. doi: 10.3934/cpaa.2020246

 Impact Factor: 

Metrics

  • PDF downloads (92)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]