Advanced Search
Article Contents
Article Contents

An iterative approach to $L^\infty$-boundedness in quasilinear Keller-Segel systems

Abstract Related Papers Cited by
  • This paper mainly considers the uniform bound on solutions of non-degenerate Keller-Segel systems on the whole space. In the case that the domain is bounded, Tao-Winkler (2012) proved existence of globally bounded solutions of non-degenerate systems. More precisely, they gave the result on boundedness in quasilinear parabolic equations by using the $L^p$-bounds on the solution for some large $p>1$. In Ishida-Yokota (2012), they dealt with the same system as this paper on the whole space, however, their $L^\infty$-estimate possibly grows up even if the solutions have the uniform bounds in $L^p(\mathbb{R}^N)$ for all $p\in[1,\infty)$. The present work asserts the uniform in time $L^\infty$-bound on solutions. Moreover, this paper covers the degenerate Keller-Segel systems and constructs the uniformly bounded weak solutions.
    Mathematics Subject Classification: Primary: 35K51; Secondary: 35D30, 35Q32, 92C17.


    \begin{equation} \\ \end{equation}
  • [1]

    T. Cieślak and C. Stinner, Finite-time blowup and global-in-time unbounded solutions to a parabolic-parabolic quasilinear Keller-Segel system in higher dimensions, J. Differential Equations, 252 (2012), 5832-5851.


    T. Cieślak and C. Stinner, Finite-time blowup in a supercritical quasilinear parabolic-parabolic Keller-Segel system in dimension 2, Acta Appl. Math., 129 (2014), 135-146.


    M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann. Scuola Norm. Sup. Pisa Cl. Sci., (4) 24 (1997), 633-683.


    T. Hillen and K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183-217.


    S. Ishida, Y. Maeda and T. Yokota, Gradient estimate for solutions to quasilinear non-degenerate Keller-Segel systems on $\mathbbR^N$, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2537-2568.


    S. Ishida and T. Yokota, Global existence of weak solutions to quasilinear degenerate Keller-Segel systems of parabolic-parabolic type with small data, J. Differential Equations, 252 (2012), 2469-2491.


    S. Ishida and T. Yokota, Remarks on the global existence of weak solutions to quasilinear degenerate Keller-Segel systems, Discrete Contin. Dyn. Syst. Supplements, 2013 (2013), 345-354.


    S. Ishida and T. Yokota, Blow-up in finite or infinite time for quasilinear degenerate Keller-Segel systems of parabolic-parabolic type, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013) 2569-2596.


    E. F. Keller and L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399-415.


    T. Nagai, Global existence and blowup of solutions to a chemotaxis system, Nonlinear Anal., 47 (2001), 777-787.


    T. Nagai, T. Senba and K. Yoshida, Application of the Trudinger-Moser inequality to a parabolic system of chemotaxis, Funkcial. Ekvac., 40 (1997), 411-433.


    T. Nagai, R. Syukuinn and M. Umesako, Decay properties and asymptotic profiles of bounded solutions to a parabolic system of chemotaxis in $\mathbbR^N$, Funkcial. Ekvac., 46 (2003), 383-407.


    K. Osaki and A. Yagi, Finite dimensional attractor for one-dimensional Keller-Segel equations, Funkcial. Ekvac., 44 (2001), 441-469.


    R. E. Showalter, Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Mathematical Surveys and Monographs, 49 American Mathematical Society, Providence, RI, (1997).


    Y. Sugiyama and H. Kunii, Global existence and decay properties for a degenerate Keller-Segel model with a power factor in drift term, J. Differential Equations, 227 (2006), 333-364.


    Y. Sugiyama and Y. Yahagi, Extinction, decay and blow-up for Keller-Segel systems of fast diffusion type, J. Differential Equations, 250 (2011), 3047-3087.


    Y. Tao and M. Winkler, Boundedness in a quasilinear parabolic-parabolic Keller-Segel system with subcritical sensitivity, J. Differential Equations, 252 (2012), 692-715.


    M. Winkler, Absence of collapse in a parabolic chemotaxis system with signal-dependent sensitivity, Math. Nachr., 283 (2010), 1664-1673.


    M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differential Equations, 248 (2010), 2889-2905.


    M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748-767.

  • 加载中
Open Access Under a Creative Commons license

Article Metrics

HTML views() PDF downloads(172) Cited by(0)

Access History

Other Articles By Authors



    DownLoad:  Full-Size Img  PowerPoint