2015, 2015(special): 644-651. doi: 10.3934/proc.2015.0644

Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field

1. 

Mathematical Sciences, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570

2. 

Natural and Physical Sciences, Tomakomai National College of Technology, 443, Nishikioka, Tomakomai-shi, Hokkaido, 059-1275

Received  September 2014 Revised  April 2015 Published  November 2015

In this short paper we propose a finite difference scheme for the Landau-Lifshitz equation and an iteration procedure to solve the scheme. The key concept is ``structure-preserving''. We show that the proposed method inherits important mathematical structures from the original problem and also analysis the iteration.
Citation: Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644
References:
[1]

Ivan Cimrák, A survey on the numerics and computations for the Landau-Lifschitz equation of micromagnetism,, Arch. Comput. Methods. Eng Vol. 15 (2008), 15 (2008), 277.

[2]

Weinan E, Xiao-ping Wang, Numerical methods for the Landau-Lifshitz equation,, SIAM J. NUMER. ANAL. Vol. 38 (2001), 38 (2001), 1647.

[3]

François Alouges, A new finite element scheme for Landau-Lifschitz equations,, Discrete. Conti. Dyn. Syst Vol. 1 (2008), 1 (2008), 187.

[4]

A. Fuwa, T. Ishiwata and M. Tsutsumi, Finite difference schemes for Landau-Lifshitz equation,, Proceedings of Czech-Japanese Seminar in Applied Mathematics 2006, 6 (2007), 107.

[5]

A. Fuwa, T. Ishiwata and M. Tsutsumi, Finite difference scheme for the Landau-Lifshitz equation,, Japan J. Ind. Appl. Math. 29 (2012), 29 (2012), 83.

[6]

Sören Bartels, Constraint preserving, Inexact solution of implicit discretizations of Landau-Lifshitz-Gilbert equations and consequences for convergence,, PAMM proc.Appl. Math. Mech Vol. 6 (2006), 6 (2006), 19.

[7]

Sören Bartels and Andreas Prohl, Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation,, SIAM J. NUMER. ANAL. Vol. 44 (2006), 44 (2006), 1405.

show all references

References:
[1]

Ivan Cimrák, A survey on the numerics and computations for the Landau-Lifschitz equation of micromagnetism,, Arch. Comput. Methods. Eng Vol. 15 (2008), 15 (2008), 277.

[2]

Weinan E, Xiao-ping Wang, Numerical methods for the Landau-Lifshitz equation,, SIAM J. NUMER. ANAL. Vol. 38 (2001), 38 (2001), 1647.

[3]

François Alouges, A new finite element scheme for Landau-Lifschitz equations,, Discrete. Conti. Dyn. Syst Vol. 1 (2008), 1 (2008), 187.

[4]

A. Fuwa, T. Ishiwata and M. Tsutsumi, Finite difference schemes for Landau-Lifshitz equation,, Proceedings of Czech-Japanese Seminar in Applied Mathematics 2006, 6 (2007), 107.

[5]

A. Fuwa, T. Ishiwata and M. Tsutsumi, Finite difference scheme for the Landau-Lifshitz equation,, Japan J. Ind. Appl. Math. 29 (2012), 29 (2012), 83.

[6]

Sören Bartels, Constraint preserving, Inexact solution of implicit discretizations of Landau-Lifshitz-Gilbert equations and consequences for convergence,, PAMM proc.Appl. Math. Mech Vol. 6 (2006), 6 (2006), 19.

[7]

Sören Bartels and Andreas Prohl, Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation,, SIAM J. NUMER. ANAL. Vol. 44 (2006), 44 (2006), 1405.

[1]

Wei Deng, Baisheng Yan. On Landau-Lifshitz equations of no-exchange energy models in ferromagnetics. Evolution Equations & Control Theory, 2013, 2 (4) : 599-620. doi: 10.3934/eect.2013.2.599

[2]

Takeshi Fukao, Shuji Yoshikawa, Saori Wada. Structure-preserving finite difference schemes for the Cahn-Hilliard equation with dynamic boundary conditions in the one-dimensional case. Communications on Pure & Applied Analysis, 2017, 16 (5) : 1915-1938. doi: 10.3934/cpaa.2017093

[3]

Xueke Pu, Boling Guo, Jingjun Zhang. Global weak solutions to the 1-D fractional Landau-Lifshitz equation. Discrete & Continuous Dynamical Systems - B, 2010, 14 (1) : 199-207. doi: 10.3934/dcdsb.2010.14.199

[4]

Jian Zhai, Zhihui Cai. $\Gamma$-convergence with Dirichlet boundary condition and Landau-Lifshitz functional for thin film. Discrete & Continuous Dynamical Systems - B, 2009, 11 (4) : 1071-1085. doi: 10.3934/dcdsb.2009.11.1071

[5]

Ze Li, Lifeng Zhao. Convergence to harmonic maps for the Landau-Lifshitz flows between two dimensional hyperbolic spaces. Discrete & Continuous Dynamical Systems - A, 2019, 39 (1) : 607-638. doi: 10.3934/dcds.2019025

[6]

Alina Chertock, Changhui Tan, Bokai Yan. An asymptotic preserving scheme for kinetic models with singular limit. Kinetic & Related Models, 2018, 11 (4) : 735-756. doi: 10.3934/krm.2018030

[7]

Jingwei Hu, Shi Jin, Li Wang. An asymptotic-preserving scheme for the semiconductor Boltzmann equation with two-scale collisions: A splitting approach. Kinetic & Related Models, 2015, 8 (4) : 707-723. doi: 10.3934/krm.2015.8.707

[8]

Catherine Choquet, Mohammed Moumni, Mouhcine Tilioua. Homogenization of the Landau-Lifshitz-Gilbert equation in a contrasted composite medium. Discrete & Continuous Dynamical Systems - S, 2018, 11 (1) : 35-57. doi: 10.3934/dcdss.2018003

[9]

Alina Chertock, Alexander Kurganov, Mária Lukáčová-Medvi${\rm{\check{d}}}$ová, Șeyma Nur Özcan. An asymptotic preserving scheme for kinetic chemotaxis models in two space dimensions. Kinetic & Related Models, 2019, 12 (1) : 195-216. doi: 10.3934/krm.2019009

[10]

Nicolas Crouseilles, Mohammed Lemou, SV Raghurama Rao, Ankit Ruhi, Muddu Sekhar. Asymptotic preserving scheme for a kinetic model describing incompressible fluids. Kinetic & Related Models, 2016, 9 (1) : 51-74. doi: 10.3934/krm.2016.9.51

[11]

Karol Mikula, Mariana Remešíková, Peter Novysedlák. Truss structure design using a length-oriented surface remeshing technique. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 933-951. doi: 10.3934/dcdss.2015.8.933

[12]

Luis Caffarelli, Fanghua Lin. Nonlocal heat flows preserving the L2 energy. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 49-64. doi: 10.3934/dcds.2009.23.49

[13]

N. Maaroufi. Topological entropy by unit length for the Ginzburg-Landau equation on the line. Discrete & Continuous Dynamical Systems - A, 2014, 34 (2) : 647-662. doi: 10.3934/dcds.2014.34.647

[14]

Rhudaina Z. Mohammad, Karel Švadlenka. Multiphase volume-preserving interface motions via localized signed distance vector scheme. Discrete & Continuous Dynamical Systems - S, 2015, 8 (5) : 969-988. doi: 10.3934/dcdss.2015.8.969

[15]

Stéphane Brull, Pierre Degond, Fabrice Deluzet, Alexandre Mouton. Asymptotic-preserving scheme for a bi-fluid Euler-Lorentz model. Kinetic & Related Models, 2011, 4 (4) : 991-1023. doi: 10.3934/krm.2011.4.991

[16]

Dimitra Antonopoulou, Georgia Karali. A nonlinear partial differential equation for the volume preserving mean curvature flow. Networks & Heterogeneous Media, 2013, 8 (1) : 9-22. doi: 10.3934/nhm.2013.8.9

[17]

Richard A. Norton, G. R. W. Quispel. Discrete gradient methods for preserving a first integral of an ordinary differential equation. Discrete & Continuous Dynamical Systems - A, 2014, 34 (3) : 1147-1170. doi: 10.3934/dcds.2014.34.1147

[18]

Giovanni Forni. The cohomological equation for area-preserving flows on compact surfaces. Electronic Research Announcements, 1995, 1: 114-123.

[19]

Marco A. Fontelos, Lucía B. Gamboa. On the structure of double layers in Poisson-Boltzmann equation. Discrete & Continuous Dynamical Systems - B, 2012, 17 (6) : 1939-1967. doi: 10.3934/dcdsb.2012.17.1939

[20]

Nicolas Crouseilles, Mohammed Lemou. An asymptotic preserving scheme based on a micro-macro decomposition for Collisional Vlasov equations: diffusion and high-field scaling limits. Kinetic & Related Models, 2011, 4 (2) : 441-477. doi: 10.3934/krm.2011.4.441

 Impact Factor: 

Metrics

  • PDF downloads (17)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]