2015, 2015(special): 644-651. doi: 10.3934/proc.2015.0644

Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field

1. 

Mathematical Sciences, College of Systems Engineering and Science, Shibaura Institute of Technology, 307 Fukasaku, Minuma-ku, Saitama 337-8570

2. 

Natural and Physical Sciences, Tomakomai National College of Technology, 443, Nishikioka, Tomakomai-shi, Hokkaido, 059-1275

Received  September 2014 Revised  April 2015 Published  November 2015

In this short paper we propose a finite difference scheme for the Landau-Lifshitz equation and an iteration procedure to solve the scheme. The key concept is ``structure-preserving''. We show that the proposed method inherits important mathematical structures from the original problem and also analysis the iteration.
Citation: Tetsuya Ishiwata, Kota Kumazaki. Structure preserving finite difference scheme for the Landau-Lifshitz equation with applied magnetic field. Conference Publications, 2015, 2015 (special) : 644-651. doi: 10.3934/proc.2015.0644
References:
[1]

Ivan Cimrák, A survey on the numerics and computations for the Landau-Lifschitz equation of micromagnetism,, Arch. Comput. Methods. Eng Vol. 15 (2008), 15 (2008), 277.   Google Scholar

[2]

Weinan E, Xiao-ping Wang, Numerical methods for the Landau-Lifshitz equation,, SIAM J. NUMER. ANAL. Vol. 38 (2001), 38 (2001), 1647.   Google Scholar

[3]

François Alouges, A new finite element scheme for Landau-Lifschitz equations,, Discrete. Conti. Dyn. Syst Vol. 1 (2008), 1 (2008), 187.   Google Scholar

[4]

A. Fuwa, T. Ishiwata and M. Tsutsumi, Finite difference schemes for Landau-Lifshitz equation,, Proceedings of Czech-Japanese Seminar in Applied Mathematics 2006, 6 (2007), 107.   Google Scholar

[5]

A. Fuwa, T. Ishiwata and M. Tsutsumi, Finite difference scheme for the Landau-Lifshitz equation,, Japan J. Ind. Appl. Math. 29 (2012), 29 (2012), 83.   Google Scholar

[6]

Sören Bartels, Constraint preserving, Inexact solution of implicit discretizations of Landau-Lifshitz-Gilbert equations and consequences for convergence,, PAMM proc.Appl. Math. Mech Vol. 6 (2006), 6 (2006), 19.   Google Scholar

[7]

Sören Bartels and Andreas Prohl, Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation,, SIAM J. NUMER. ANAL. Vol. 44 (2006), 44 (2006), 1405.   Google Scholar

show all references

References:
[1]

Ivan Cimrák, A survey on the numerics and computations for the Landau-Lifschitz equation of micromagnetism,, Arch. Comput. Methods. Eng Vol. 15 (2008), 15 (2008), 277.   Google Scholar

[2]

Weinan E, Xiao-ping Wang, Numerical methods for the Landau-Lifshitz equation,, SIAM J. NUMER. ANAL. Vol. 38 (2001), 38 (2001), 1647.   Google Scholar

[3]

François Alouges, A new finite element scheme for Landau-Lifschitz equations,, Discrete. Conti. Dyn. Syst Vol. 1 (2008), 1 (2008), 187.   Google Scholar

[4]

A. Fuwa, T. Ishiwata and M. Tsutsumi, Finite difference schemes for Landau-Lifshitz equation,, Proceedings of Czech-Japanese Seminar in Applied Mathematics 2006, 6 (2007), 107.   Google Scholar

[5]

A. Fuwa, T. Ishiwata and M. Tsutsumi, Finite difference scheme for the Landau-Lifshitz equation,, Japan J. Ind. Appl. Math. 29 (2012), 29 (2012), 83.   Google Scholar

[6]

Sören Bartels, Constraint preserving, Inexact solution of implicit discretizations of Landau-Lifshitz-Gilbert equations and consequences for convergence,, PAMM proc.Appl. Math. Mech Vol. 6 (2006), 6 (2006), 19.   Google Scholar

[7]

Sören Bartels and Andreas Prohl, Convergence of an implicit finite element method for the Landau-Lifshitz-Gilbert equation,, SIAM J. NUMER. ANAL. Vol. 44 (2006), 44 (2006), 1405.   Google Scholar

[1]

Bo Chen, Youde Wang. Global weak solutions for Landau-Lifshitz flows and heat flows associated to micromagnetic energy functional. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020268

[2]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[3]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[4]

Xuefei He, Kun Wang, Liwei Xu. Efficient finite difference methods for the nonlinear Helmholtz equation in Kerr medium. Electronic Research Archive, 2020, 28 (4) : 1503-1528. doi: 10.3934/era.2020079

[5]

Thierry Horsin, Mohamed Ali Jendoubi. On the convergence to equilibria of a sequence defined by an implicit scheme. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020465

[6]

Anton A. Kutsenko. Isomorphism between one-Dimensional and multidimensional finite difference operators. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020270

[7]

Reza Lotfi, Zahra Yadegari, Seyed Hossein Hosseini, Amir Hossein Khameneh, Erfan Babaee Tirkolaee, Gerhard-Wilhelm Weber. A robust time-cost-quality-energy-environment trade-off with resource-constrained in project management: A case study for a bridge construction project. Journal of Industrial & Management Optimization, 2020  doi: 10.3934/jimo.2020158

[8]

Peter Poláčik, Pavol Quittner. Entire and ancient solutions of a supercritical semilinear heat equation. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 413-438. doi: 10.3934/dcds.2020136

[9]

Jianhua Huang, Yanbin Tang, Ming Wang. Singular support of the global attractor for a damped BBM equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020345

[10]

Stefano Bianchini, Paolo Bonicatto. Forward untangling and applications to the uniqueness problem for the continuity equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020384

[11]

Siyang Cai, Yongmei Cai, Xuerong Mao. A stochastic differential equation SIS epidemic model with regime switching. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020317

[12]

Cheng He, Changzheng Qu. Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28 (4) : 1545-1562. doi: 10.3934/era.2020081

[13]

Hirokazu Ninomiya. Entire solutions of the Allen–Cahn–Nagumo equation in a multi-dimensional space. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 395-412. doi: 10.3934/dcds.2020364

[14]

Jiaquan Liu, Xiangqing Liu, Zhi-Qiang Wang. Sign-changing solutions for a parameter-dependent quasilinear equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020454

[15]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[16]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[17]

Leilei Wei, Yinnian He. A fully discrete local discontinuous Galerkin method with the generalized numerical flux to solve the tempered fractional reaction-diffusion equation. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020319

[18]

Kihoon Seong. Low regularity a priori estimates for the fourth order cubic nonlinear Schrödinger equation. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5437-5473. doi: 10.3934/cpaa.2020247

[19]

Ahmad Z. Fino, Wenhui Chen. A global existence result for two-dimensional semilinear strongly damped wave equation with mixed nonlinearity in an exterior domain. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5387-5411. doi: 10.3934/cpaa.2020243

[20]

José Luis López. A quantum approach to Keller-Segel dynamics via a dissipative nonlinear Schrödinger equation. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020376

 Impact Factor: 

Metrics

  • PDF downloads (37)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]