2015, 2015(special): 652-659. doi: 10.3934/proc.2015.0652

On global dynamics in a multi-dimensional discrete map

1. 

Department of Mathematics, Pennsylvania State University, PO Box PSU, Lehman, PA 18627, United States

Received  September 2014 Revised  October 2015 Published  November 2015

We derive preliminary results on global dynamics of the multi-dimensional discrete map $$ F:\; (x_1,x_2,\dots,x_{k-1},x_k)\mapsto (x_1+af(x_k),x_1,x_2,\dots,x_{k-1}) $$ where the continuous real-valued function $f$ is one-sided bounded and satisfying the negative feedback condition, $x\cdot f(x)<0, x\ne0$, $a$ is a positive parameter. We show the existence of a compact global attractor for map $F$, and derive a condition for the global attractivity of the zero fixed point.
Citation: Anatoli F. Ivanov. On global dynamics in a multi-dimensional discrete map. Conference Publications, 2015, 2015 (special) : 652-659. doi: 10.3934/proc.2015.0652
References:
[1]

P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Boston, 1980.

[2]

W. de Melo and S. van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete 3 [Results in Mathematics and Related Areas 3], 25, Springer-Verlag, Berlin, 1993, 605 pp.

[3]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems. Second Edition. Addison-Wesley Publ. Co., 1989, 336 pp.

[4]

O. Diekmann, S. van Gils, S. Verdyn Lunel, and H. O. Walther, Delay Equations: Complex, Functional, and Nonlinear Analysis, Springer-Verlag, New York, 1995.

[5]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer Applied Mathematical Sciences, 99, 1993.

[6]

B. Hasselblatt and A. B. Katok, Handbook of dynamical systems, North Holland, 2002.

[7]

A. F. Ivanov and S. I. Trofimchuk, On global dynamics in a periodic differential equation with deviating argument, Applied Mathematics and Computation, 252 (2015), 446-456.

[8]

R. D. Nussbaum, Periodic solutions of nonlinear autonomous functional differential equations. Functional differential equations and approximation of fixed points (Proc. Summer School and Conf., Univ. Bonn, Bonn, 1978), pp. 283-325, Lecture Notes in Math., 730, Springer, Berlin, 1979.

[9]

A. N. Sharkovsky, S. F. Kolyada, A. G. Sivak and V. V. Fedorenko, Dynamics of One-dimensional Maps, Kluwer Academic Publishers, Ser.: Mathematics and Its Application, vol. 407, 1997, 261 pp.

show all references

References:
[1]

P. Collet and J. P. Eckmann, Iterated Maps on the Interval as Dynamical Systems, Birkhäuser, Boston, 1980.

[2]

W. de Melo and S. van Strien, One-dimensional dynamics, Ergebnisse der Mathematik und ihrer Grenzgebiete 3 [Results in Mathematics and Related Areas 3], 25, Springer-Verlag, Berlin, 1993, 605 pp.

[3]

R. L. Devaney, An Introduction to Chaotic Dynamical Systems. Second Edition. Addison-Wesley Publ. Co., 1989, 336 pp.

[4]

O. Diekmann, S. van Gils, S. Verdyn Lunel, and H. O. Walther, Delay Equations: Complex, Functional, and Nonlinear Analysis, Springer-Verlag, New York, 1995.

[5]

J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer Applied Mathematical Sciences, 99, 1993.

[6]

B. Hasselblatt and A. B. Katok, Handbook of dynamical systems, North Holland, 2002.

[7]

A. F. Ivanov and S. I. Trofimchuk, On global dynamics in a periodic differential equation with deviating argument, Applied Mathematics and Computation, 252 (2015), 446-456.

[8]

R. D. Nussbaum, Periodic solutions of nonlinear autonomous functional differential equations. Functional differential equations and approximation of fixed points (Proc. Summer School and Conf., Univ. Bonn, Bonn, 1978), pp. 283-325, Lecture Notes in Math., 730, Springer, Berlin, 1979.

[9]

A. N. Sharkovsky, S. F. Kolyada, A. G. Sivak and V. V. Fedorenko, Dynamics of One-dimensional Maps, Kluwer Academic Publishers, Ser.: Mathematics and Its Application, vol. 407, 1997, 261 pp.

[1]

Yejuan Wang, Lin Yang. Global exponential attraction for multi-valued semidynamical systems with application to delay differential equations without uniqueness. Discrete and Continuous Dynamical Systems - B, 2019, 24 (4) : 1961-1987. doi: 10.3934/dcdsb.2018257

[2]

Anatoli F. Ivanov, Musa A. Mammadov. Global asymptotic stability in a class of nonlinear differential delay equations. Conference Publications, 2011, 2011 (Special) : 727-736. doi: 10.3934/proc.2011.2011.727

[3]

Yejuan Wang, Peter E. Kloeden. The uniform attractor of a multi-valued process generated by reaction-diffusion delay equations on an unbounded domain. Discrete and Continuous Dynamical Systems, 2014, 34 (10) : 4343-4370. doi: 10.3934/dcds.2014.34.4343

[4]

Zhiming Liu, Zhijian Yang. Global attractor of multi-valued operators with applications to a strongly damped nonlinear wave equation without uniqueness. Discrete and Continuous Dynamical Systems - B, 2020, 25 (1) : 223-240. doi: 10.3934/dcdsb.2019179

[5]

James P. Kelly, Kevin McGoff. Entropy conjugacy for Markov multi-maps of the interval. Discrete and Continuous Dynamical Systems, 2021, 41 (5) : 2071-2094. doi: 10.3934/dcds.2020353

[6]

Siegfried Carl, Christoph Tietz. Quasilinear elliptic equations with measures and multi-valued lower order terms. Discrete and Continuous Dynamical Systems - S, 2018, 11 (2) : 193-212. doi: 10.3934/dcdss.2018012

[7]

Jingyu Wang, Yejuan Wang, Tomás Caraballo. Multi-valued random dynamics of stochastic wave equations with infinite delays. Discrete and Continuous Dynamical Systems - B, 2022  doi: 10.3934/dcdsb.2021310

[8]

Michal Málek, Peter Raith. Stability of the distribution function for piecewise monotonic maps on the interval. Discrete and Continuous Dynamical Systems, 2018, 38 (5) : 2527-2539. doi: 10.3934/dcds.2018105

[9]

Inês Cruz, M. Esmeralda Sousa-Dias. Reduction of cluster iteration maps. Journal of Geometric Mechanics, 2014, 6 (3) : 297-318. doi: 10.3934/jgm.2014.6.297

[10]

Carlos Correia Ramos, Nuno Martins, Paulo R. Pinto. Escape dynamics for interval maps. Discrete and Continuous Dynamical Systems, 2019, 39 (11) : 6241-6260. doi: 10.3934/dcds.2019272

[11]

Limei Dai. Multi-valued solutions to a class of parabolic Monge-Ampère equations. Communications on Pure and Applied Analysis, 2014, 13 (3) : 1061-1074. doi: 10.3934/cpaa.2014.13.1061

[12]

Yangrong Li, Renhai Wang, Lianbing She. Backward controllability of pullback trajectory attractors with applications to multi-valued Jeffreys-Oldroyd equations. Evolution Equations and Control Theory, 2018, 7 (4) : 617-637. doi: 10.3934/eect.2018030

[13]

Tian Zhang, Huabin Chen, Chenggui Yuan, Tomás Caraballo. On the asymptotic behavior of highly nonlinear hybrid stochastic delay differential equations. Discrete and Continuous Dynamical Systems - B, 2019, 24 (10) : 5355-5375. doi: 10.3934/dcdsb.2019062

[14]

Leonid Shaikhet. Stability of delay differential equations with fading stochastic perturbations of the type of white noise and poisson's jumps. Discrete and Continuous Dynamical Systems - B, 2020, 25 (9) : 3651-3657. doi: 10.3934/dcdsb.2020077

[15]

Tomás Caraballo, Leonid Shaikhet. Stability of delay evolution equations with stochastic perturbations. Communications on Pure and Applied Analysis, 2014, 13 (5) : 2095-2113. doi: 10.3934/cpaa.2014.13.2095

[16]

Cemil Tunç. Stability, boundedness and uniform boundedness of solutions of nonlinear delay differential equations. Conference Publications, 2011, 2011 (Special) : 1395-1403. doi: 10.3934/proc.2011.2011.1395

[17]

Pham Huu Anh Ngoc. Stability of nonlinear differential systems with delay. Evolution Equations and Control Theory, 2015, 4 (4) : 493-505. doi: 10.3934/eect.2015.4.493

[18]

Christopher Cleveland. Rotation sets for unimodal maps of the interval. Discrete and Continuous Dynamical Systems, 2003, 9 (3) : 617-632. doi: 10.3934/dcds.2003.9.617

[19]

Jason Atnip, Mariusz Urbański. Critically finite random maps of an interval. Discrete and Continuous Dynamical Systems, 2020, 40 (8) : 4839-4906. doi: 10.3934/dcds.2020204

[20]

Andrea Picco, Lamberto Rondoni. Boltzmann maps for networks of chemical reactions and the multi-stability problem. Networks and Heterogeneous Media, 2009, 4 (3) : 501-526. doi: 10.3934/nhm.2009.4.501

 Impact Factor: 

Metrics

  • PDF downloads (165)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]