2015, 2015(special): 670-677. doi: 10.3934/proc.2015.0670

Linear model of traffic flow in an isolated network

1. 

Grupo de Dinámica No Lineal. Universidad Pontificia Comillas de Madrid, C/Alberto Agulilera 23, 28015 Madrid

2. 

Departamento de Matemática Aplicada, Universidad Complutense de Madrid, 28040 Madrid, Spain

Received  September 2014 Revised  April 2015 Published  November 2015

We obtain a mathematical linear model which describes automatic operation of the traffic of material objects in a network. Existence and global solutions is obtained for such model. A related model which used outdated information is shown to collapse in finite time.
Citation: Ángela Jiménez-Casas, Aníbal Rodríguez-Bernal. Linear model of traffic flow in an isolated network. Conference Publications, 2015, 2015 (special) : 670-677. doi: 10.3934/proc.2015.0670
References:
[1]

J. K. Hale, Theory of Functional Differential Equations,, Springer-Verlag, (1977).   Google Scholar

[2]

J. K. Hale, L. T. Magalhaes and W. M. Oliva, Dynamics in Infinite Dimensions,, Springer-Verlag, (2002).   Google Scholar

[3]

A. Jiménez-Casas and A. Rodríguez-Bernal, A Model of Traffic Flow in a Network,, Advances in Differential Equations and Applications, 4 (2014), 193.   Google Scholar

[4]

A. Jiménez-Casas and A. Rodríguez-Bernal, General model of traffic flow in an isolated network,, in preparation., ().   Google Scholar

[5]

B. Sridhar and P. K. Menon, Comparison of Linear Dynamic Models for Air Traffic Flow Management,, Proceedings of the 16th IFAC World Congress, (2005), 1962.   Google Scholar

[6]

D. Sun, I. S. Strub and A. M. Bayen, Comparison of the Performance of Four Eulerian Network Flow Models for Strategic Air Traffic Network Flow Models for Strategic Air Traffic Management,, Networks and Heterogeneous Media, 2 (2007), 569.   Google Scholar

show all references

References:
[1]

J. K. Hale, Theory of Functional Differential Equations,, Springer-Verlag, (1977).   Google Scholar

[2]

J. K. Hale, L. T. Magalhaes and W. M. Oliva, Dynamics in Infinite Dimensions,, Springer-Verlag, (2002).   Google Scholar

[3]

A. Jiménez-Casas and A. Rodríguez-Bernal, A Model of Traffic Flow in a Network,, Advances in Differential Equations and Applications, 4 (2014), 193.   Google Scholar

[4]

A. Jiménez-Casas and A. Rodríguez-Bernal, General model of traffic flow in an isolated network,, in preparation., ().   Google Scholar

[5]

B. Sridhar and P. K. Menon, Comparison of Linear Dynamic Models for Air Traffic Flow Management,, Proceedings of the 16th IFAC World Congress, (2005), 1962.   Google Scholar

[6]

D. Sun, I. S. Strub and A. M. Bayen, Comparison of the Performance of Four Eulerian Network Flow Models for Strategic Air Traffic Network Flow Models for Strategic Air Traffic Management,, Networks and Heterogeneous Media, 2 (2007), 569.   Google Scholar

[1]

Soniya Singh, Sumit Arora, Manil T. Mohan, Jaydev Dabas. Approximate controllability of second order impulsive systems with state-dependent delay in Banach spaces. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020103

[2]

Reza Chaharpashlou, Abdon Atangana, Reza Saadati. On the fuzzy stability results for fractional stochastic Volterra integral equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020432

[3]

Giuseppina Guatteri, Federica Masiero. Stochastic maximum principle for problems with delay with dependence on the past through general measures. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020048

[4]

Ilyasse Lamrani, Imad El Harraki, Ali Boutoulout, Fatima-Zahrae El Alaoui. Feedback stabilization of bilinear coupled hyperbolic systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020434

[5]

Felix Finster, Jürg Fröhlich, Marco Oppio, Claudio F. Paganini. Causal fermion systems and the ETH approach to quantum theory. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020451

[6]

Xiyou Cheng, Zhitao Zhang. Structure of positive solutions to a class of Schrödinger systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020461

[7]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[8]

Jianquan Li, Xin Xie, Dian Zhang, Jia Li, Xiaolin Lin. Qualitative analysis of a simple tumor-immune system with time delay of tumor action. Discrete & Continuous Dynamical Systems - B, 2020  doi: 10.3934/dcdsb.2020341

[9]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[10]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020375

[11]

João Marcos do Ó, Bruno Ribeiro, Bernhard Ruf. Hamiltonian elliptic systems in dimension two with arbitrary and double exponential growth conditions. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 277-296. doi: 10.3934/dcds.2020138

[12]

Awais Younus, Zoubia Dastgeer, Nudrat Ishaq, Abdul Ghaffar, Kottakkaran Sooppy Nisar, Devendra Kumar. On the observability of conformable linear time-invariant control systems. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020444

[13]

Shiqi Ma. On recent progress of single-realization recoveries of random Schrödinger systems. Electronic Research Archive, , () : -. doi: 10.3934/era.2020121

[14]

Maoding Zhen, Binlin Zhang, Vicenţiu D. Rădulescu. Normalized solutions for nonlinear coupled fractional systems: Low and high perturbations in the attractive case. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020379

[15]

Zedong Yang, Guotao Wang, Ravi P. Agarwal, Haiyong Xu. Existence and nonexistence of entire positive radial solutions for a class of Schrödinger elliptic systems involving a nonlinear operator. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020436

[16]

Jerry L. Bona, Angel Durán, Dimitrios Mitsotakis. Solitary-wave solutions of Benjamin-Ono and other systems for internal waves. I. approximations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 87-111. doi: 10.3934/dcds.2020215

[17]

Gongbao Li, Tao Yang. Improved Sobolev inequalities involving weighted Morrey norms and the existence of nontrivial solutions to doubly critical elliptic systems involving fractional Laplacian and Hardy terms. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020469

 Impact Factor: 

Metrics

  • PDF downloads (30)
  • HTML views (0)
  • Cited by (1)

[Back to Top]