2015, 2015(special): 678-685. doi: 10.3934/proc.2015.0678

Stability of neutral delay differential equations modeling wave propagation in cracked media

1. 

Laboratoire J.A. Dieudonné, UMR 7351 CNRS, Université de Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02, France

2. 

Laboratoire de Mécanique et dAcoustique, UPR 7051 CNRS, 31 chemin Joseph Aiguier, 13402 Marseille, France

Received  September 2014 Revised  August 2015 Published  November 2015

Propagation of elastic waves is studied in a 1D medium containing $N$ cracks modeled by nonlinear jump conditions. The case $N=1$ is fully understood. When $N>1$, the evolution equations are written as a system of nonlinear neutral delay differential equations, leading to a well-posed Cauchy problem. In the case $N=2$, some mathematical results about the existence, uniqueness and attractivity of periodic solutions have been obtained in 2012 by the authors, under the assumption of small sources. The difficulty of analysis follows from the fact that the spectrum of the linear operator is asymptotically closed to the imaginary axis. Here we propose a new result of stability in the homogeneous case, based on an energy method. One deduces the asymptotic stability of the zero steady-state. Extension to $N=3$ cracks is also considered, leading to new results in particular configurations.
Citation: Stéphane Junca, Bruno Lombard. Stability of neutral delay differential equations modeling wave propagation in cracked media. Conference Publications, 2015, 2015 (special) : 678-685. doi: 10.3934/proc.2015.0678
References:
[1]

R. Bellman and K. Cooke, Differential Difference Equations,, Academic Press, (1963).   Google Scholar

[2]

J. Cermák and J. Hrabalová, Delay-dependent stability criteria for neutral delay differential and difference equations,, Discrete Contin. Dyn. Syst. Ser. A., 34 (2014), 4577.   Google Scholar

[3]

H. I. Freedman and Y. Kuang, Stability switches in linear scalar neutral delay equations,, Funkcial. Ekvac., 34 (1991), 187.   Google Scholar

[4]

P. S. Gromova, Stability of solutions of nonlinear equations in the asymptotically critical case,, Mathematical Notes, 1-6 (1967), 1.   Google Scholar

[5]

J. K. Hale, S. M. Verduyn Lunel, and M. Sjoerd, Introduction to functional-differential equations,, Applied Mathematical Sciences, (1993).   Google Scholar

[6]

S. Junca, Oscillating Waves for Nonlinear Conservation Laws,, Habilitation dissertation, (2013).   Google Scholar

[7]

S. Junca and B. Lombard, Dilatation of a one-dimensional nonlinear crack impacted by a periodic elastic wave,, SIAM J. Appl. Math., 70 (2009), 735.   Google Scholar

[8]

S. Junca and B. Lombard, Interaction between periodic elastic waves and two contact nonlinearities,, Math. Models Methods Appl. Sci., 22 (2012).   Google Scholar

[9]

S. Junca and B. Lombard, Stability of a critical nonlinear neutral delay differential equation,, J. Differential Equations, 256 (2014), 2368.   Google Scholar

[10]

B. Lombard, Modélisation numérique de la propagation et de la diffraction d'ondes mécaniques, [in French],, Habilitation dissertation, (2010).   Google Scholar

[11]

R. Rabah, G. M. Sklyar, and A. V. Rezounenko, Stability analysis of neutral type systems in Hilbert space,, J. Differential Equations, 214 (2005), 391.   Google Scholar

[12]

X. F. Zhou, J. Liang, and T. J. Xiao, Asymptotic stability of the zero solution for degenerate retarded differential equations,, Nonlinear Analysis, 70 (2009), 1415.   Google Scholar

show all references

References:
[1]

R. Bellman and K. Cooke, Differential Difference Equations,, Academic Press, (1963).   Google Scholar

[2]

J. Cermák and J. Hrabalová, Delay-dependent stability criteria for neutral delay differential and difference equations,, Discrete Contin. Dyn. Syst. Ser. A., 34 (2014), 4577.   Google Scholar

[3]

H. I. Freedman and Y. Kuang, Stability switches in linear scalar neutral delay equations,, Funkcial. Ekvac., 34 (1991), 187.   Google Scholar

[4]

P. S. Gromova, Stability of solutions of nonlinear equations in the asymptotically critical case,, Mathematical Notes, 1-6 (1967), 1.   Google Scholar

[5]

J. K. Hale, S. M. Verduyn Lunel, and M. Sjoerd, Introduction to functional-differential equations,, Applied Mathematical Sciences, (1993).   Google Scholar

[6]

S. Junca, Oscillating Waves for Nonlinear Conservation Laws,, Habilitation dissertation, (2013).   Google Scholar

[7]

S. Junca and B. Lombard, Dilatation of a one-dimensional nonlinear crack impacted by a periodic elastic wave,, SIAM J. Appl. Math., 70 (2009), 735.   Google Scholar

[8]

S. Junca and B. Lombard, Interaction between periodic elastic waves and two contact nonlinearities,, Math. Models Methods Appl. Sci., 22 (2012).   Google Scholar

[9]

S. Junca and B. Lombard, Stability of a critical nonlinear neutral delay differential equation,, J. Differential Equations, 256 (2014), 2368.   Google Scholar

[10]

B. Lombard, Modélisation numérique de la propagation et de la diffraction d'ondes mécaniques, [in French],, Habilitation dissertation, (2010).   Google Scholar

[11]

R. Rabah, G. M. Sklyar, and A. V. Rezounenko, Stability analysis of neutral type systems in Hilbert space,, J. Differential Equations, 214 (2005), 391.   Google Scholar

[12]

X. F. Zhou, J. Liang, and T. J. Xiao, Asymptotic stability of the zero solution for degenerate retarded differential equations,, Nonlinear Analysis, 70 (2009), 1415.   Google Scholar

[1]

Hai Huang, Xianlong Fu. Optimal control problems for a neutral integro-differential system with infinite delay. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020107

[2]

Stefan Ruschel, Serhiy Yanchuk. The spectrum of delay differential equations with multiple hierarchical large delays. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 151-175. doi: 10.3934/dcdss.2020321

[3]

Gervy Marie Angeles, Gilbert Peralta. Energy method for exponential stability of coupled one-dimensional hyperbolic PDE-ODE systems. Evolution Equations & Control Theory, 2020  doi: 10.3934/eect.2020108

[4]

Fathalla A. Rihan, Hebatallah J. Alsakaji. Stochastic delay differential equations of three-species prey-predator system with cooperation among prey species. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020468

[5]

Scipio Cuccagna, Masaya Maeda. A survey on asymptotic stability of ground states of nonlinear Schrödinger equations II. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020450

[6]

Hassan Mohammad. A diagonal PRP-type projection method for convex constrained nonlinear monotone equations. Journal of Industrial & Management Optimization, 2021, 17 (1) : 101-116. doi: 10.3934/jimo.2019101

[7]

Lorenzo Zambotti. A brief and personal history of stochastic partial differential equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 471-487. doi: 10.3934/dcds.2020264

[8]

Fabio Camilli, Giulia Cavagnari, Raul De Maio, Benedetto Piccoli. Superposition principle and schemes for measure differential equations. Kinetic & Related Models, , () : -. doi: 10.3934/krm.2020050

[9]

Eduard Feireisl, Elisabetta Rocca, Giulio Schimperna, Arghir Zarnescu. Weak sequential stability for a nonlinear model of nematic electrolytes. Discrete & Continuous Dynamical Systems - S, 2021, 14 (1) : 219-241. doi: 10.3934/dcdss.2020366

[10]

Xin-Guang Yang, Lu Li, Xingjie Yan, Ling Ding. The structure and stability of pullback attractors for 3D Brinkman-Forchheimer equation with delay. Electronic Research Archive, 2020, 28 (4) : 1395-1418. doi: 10.3934/era.2020074

[11]

Yueyang Zheng, Jingtao Shi. A stackelberg game of backward stochastic differential equations with partial information. Mathematical Control & Related Fields, 2020  doi: 10.3934/mcrf.2020047

[12]

Gunther Uhlmann, Jian Zhai. Inverse problems for nonlinear hyperbolic equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 455-469. doi: 10.3934/dcds.2020380

[13]

Yuxia Guo, Shaolong Peng. A direct method of moving planes for fully nonlinear nonlocal operators and applications. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020462

[14]

Li-Bin Liu, Ying Liang, Jian Zhang, Xiaobing Bao. A robust adaptive grid method for singularly perturbed Burger-Huxley equations. Electronic Research Archive, 2020, 28 (4) : 1439-1457. doi: 10.3934/era.2020076

[15]

Thomas Bartsch, Tian Xu. Strongly localized semiclassical states for nonlinear Dirac equations. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 29-60. doi: 10.3934/dcds.2020297

[16]

Hua Chen, Yawei Wei. Multiple solutions for nonlinear cone degenerate elliptic equations. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020272

[17]

Thabet Abdeljawad, Mohammad Esmael Samei. Applying quantum calculus for the existence of solution of $ q $-integro-differential equations with three criteria. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020440

[18]

Marion Darbas, Jérémy Heleine, Stephanie Lohrengel. Numerical resolution by the quasi-reversibility method of a data completion problem for Maxwell's equations. Inverse Problems & Imaging, 2020, 14 (6) : 1107-1133. doi: 10.3934/ipi.2020056

[19]

Serge Dumont, Olivier Goubet, Youcef Mammeri. Decay of solutions to one dimensional nonlinear Schrödinger equations with white noise dispersion. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020456

[20]

Pengyu Chen. Non-autonomous stochastic evolution equations with nonlinear noise and nonlocal conditions governed by noncompact evolution families. Discrete & Continuous Dynamical Systems - A, 2020  doi: 10.3934/dcds.2020383

 Impact Factor: 

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]