2015, 2015(special): 696-704. doi: 10.3934/proc.2015.0696

Non-holonomic constraints and their impact on discretizations of Klein-Gordon lattice dynamical models

1. 

Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 01003-4515

2. 

Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton AB T6G 2G1

3. 

Department of Mathematics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801-2975, United States

Received  September 2014 Revised  March 2015 Published  November 2015

We explore a new type of discretizations of lattice dynamical models of the Klein-Gordon type relevant to the existence and long-term mobility of nonlinear waves. The discretization is based on non-holonomic constraints and is shown to retrieve the ``proper'' continuum limit of the model. Such discretizations are useful in exactly preserving a discrete analogue of the momentum. It is also shown that for generic initial data, the momentum and energy conservation laws cannot be achieved concurrently. Finally, direct numerical simulations illustrate that our models yield considerably higher mobility of strongly nonlinear solutions than the well-known ``standard'' discretizations, even in the case of highly discrete systems when the coupling between the adjacent nodes is weak. Thus, our approach is better suited for cases where an accurate description of mobility for nonlinear traveling waves is important.
Citation: Panayotis G. Kevrekidis, Vakhtang Putkaradze, Zoi Rapti. Non-holonomic constraints and their impact on discretizations of Klein-Gordon lattice dynamical models. Conference Publications, 2015, 2015 (special) : 696-704. doi: 10.3934/proc.2015.0696
References:
[1]

J. Cuevas-Maraver, P.G. Kevrekidis and F. Williams (Eds.), The sine-Gordon model and its applications: From pendula and Josephson Junctions to Gravity and High-Energy Physics,, Springer-Verlag, (2014).   Google Scholar

[2]

R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, and H.C. Morris, Solitons and Nonlinear Wave Equations,, Academic, (1983).   Google Scholar

[3]

N. Boechler, G. Theocharis, S. Job, P. G. Kevrekidis, M. A. Porter, and C. Daraio, Discrete Breathers in One-Dimensional Diatomic Granular Crystals, \emph{Phys. Rev. Lett.}, 104 (2010).   Google Scholar

[4]

M. Peyrard and M.D. Kruskal, Kink dynamics in the highly discrete sine-Gordon system,, \emph{Physica D}, 14 (1984), 88.   Google Scholar

[5]

S.V. Dmitriev, P.G. Kevrekidis and N. Yoshikawa, Standard nearest-neighbour discretizations of Klein-Gordon models cannot preserve both energy and linear momentum,, J. Phys. A, 39 (2006), 7217.   Google Scholar

[6]

Y. S. Kivshar and D. K. Campbell, Peierls-Nabarro potential for highly localized nonlinear modes, \emph{Phys. Rev. E }, 48 (1993), 3077.   Google Scholar

[7]

S.V. Dmitriev, P.G. Kevrekidis, N. Yoshikawa, Discrete Klein-Gordon models with static kinks free of the Peierls-Nabarro potential,, J. Phys. A, 38 (2005), 7617.   Google Scholar

[8]

C.-M. Marle, Rep. Math. Phys., Various approaches to conservative and nonconservative nonholonomic systems, 42 (1998), 211.   Google Scholar

[9]

H. Cendra and S. Grillo, Lagrangian systems with higher order constraints,, J. Math. Phys. 47 (2006), 47 (2006).   Google Scholar

[10]

V. I. Arnold, V. V. Kozlov and A. I. Neistadt, Mathematical Methods of Classical and Celestial Mechanics,, 3rd Ed, (2006).   Google Scholar

[11]

M. Remoissenet, Waves called solitons,, Springer-Verlag, (1999).   Google Scholar

[12]

T. Dauxois and M. Peyrard, Physics of Solitons,, Cambridge University Press, (2006).   Google Scholar

[13]

R.S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators,, \emph{Nonlinearity}, 7 (1994), 1623.   Google Scholar

[14]

S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization, Physica D, 103 (1997), 201.   Google Scholar

[15]

P.G. Kevrekidis, Non-linear waves in lattices: past, present, future,, \emph{IMA J. Appl. Math.}, 76 (2011), 389.   Google Scholar

[16]

D.E. Pelinovsky, Translationally invariant nonlinear Schrödinger lattices, \emph{Nonlinearity}, 19 (2006), 2695.   Google Scholar

[17]

P.G. Kevrekidis, On a class of discretizations of Hamiltonian nonlinear partial differential equations,, \emph{Physica D}, 183 (2003), 68.   Google Scholar

[18]

A. A. Bloch, Nonholonomic Mechanics and Control,, Interdisciplinary Applied Mathematics, (2009).   Google Scholar

[19]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics,, Encyclopedia of Mathematical Sciences, (2007).   Google Scholar

[20]

S. Flach and A.V. Gorbach, Discrete breathersdvances in theory and applications,, Phys. Rep., 467 (2008), 1.   Google Scholar

[21]

L.A. Cisneros, J. Ize and A.A. Minzoni, Modulational and numerical solutions for the steady discrete Sine-Gordon equation in two space dimensions,, Physica D, 238 (2009), 1229.   Google Scholar

[22]

J.G. Caputo and M.P. Soerensen, Radial sine-Gordon kinks as sources of fast breathers,, Phys. Rev. E, 88 (2013).   Google Scholar

show all references

References:
[1]

J. Cuevas-Maraver, P.G. Kevrekidis and F. Williams (Eds.), The sine-Gordon model and its applications: From pendula and Josephson Junctions to Gravity and High-Energy Physics,, Springer-Verlag, (2014).   Google Scholar

[2]

R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, and H.C. Morris, Solitons and Nonlinear Wave Equations,, Academic, (1983).   Google Scholar

[3]

N. Boechler, G. Theocharis, S. Job, P. G. Kevrekidis, M. A. Porter, and C. Daraio, Discrete Breathers in One-Dimensional Diatomic Granular Crystals, \emph{Phys. Rev. Lett.}, 104 (2010).   Google Scholar

[4]

M. Peyrard and M.D. Kruskal, Kink dynamics in the highly discrete sine-Gordon system,, \emph{Physica D}, 14 (1984), 88.   Google Scholar

[5]

S.V. Dmitriev, P.G. Kevrekidis and N. Yoshikawa, Standard nearest-neighbour discretizations of Klein-Gordon models cannot preserve both energy and linear momentum,, J. Phys. A, 39 (2006), 7217.   Google Scholar

[6]

Y. S. Kivshar and D. K. Campbell, Peierls-Nabarro potential for highly localized nonlinear modes, \emph{Phys. Rev. E }, 48 (1993), 3077.   Google Scholar

[7]

S.V. Dmitriev, P.G. Kevrekidis, N. Yoshikawa, Discrete Klein-Gordon models with static kinks free of the Peierls-Nabarro potential,, J. Phys. A, 38 (2005), 7617.   Google Scholar

[8]

C.-M. Marle, Rep. Math. Phys., Various approaches to conservative and nonconservative nonholonomic systems, 42 (1998), 211.   Google Scholar

[9]

H. Cendra and S. Grillo, Lagrangian systems with higher order constraints,, J. Math. Phys. 47 (2006), 47 (2006).   Google Scholar

[10]

V. I. Arnold, V. V. Kozlov and A. I. Neistadt, Mathematical Methods of Classical and Celestial Mechanics,, 3rd Ed, (2006).   Google Scholar

[11]

M. Remoissenet, Waves called solitons,, Springer-Verlag, (1999).   Google Scholar

[12]

T. Dauxois and M. Peyrard, Physics of Solitons,, Cambridge University Press, (2006).   Google Scholar

[13]

R.S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators,, \emph{Nonlinearity}, 7 (1994), 1623.   Google Scholar

[14]

S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization, Physica D, 103 (1997), 201.   Google Scholar

[15]

P.G. Kevrekidis, Non-linear waves in lattices: past, present, future,, \emph{IMA J. Appl. Math.}, 76 (2011), 389.   Google Scholar

[16]

D.E. Pelinovsky, Translationally invariant nonlinear Schrödinger lattices, \emph{Nonlinearity}, 19 (2006), 2695.   Google Scholar

[17]

P.G. Kevrekidis, On a class of discretizations of Hamiltonian nonlinear partial differential equations,, \emph{Physica D}, 183 (2003), 68.   Google Scholar

[18]

A. A. Bloch, Nonholonomic Mechanics and Control,, Interdisciplinary Applied Mathematics, (2009).   Google Scholar

[19]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics,, Encyclopedia of Mathematical Sciences, (2007).   Google Scholar

[20]

S. Flach and A.V. Gorbach, Discrete breathersdvances in theory and applications,, Phys. Rep., 467 (2008), 1.   Google Scholar

[21]

L.A. Cisneros, J. Ize and A.A. Minzoni, Modulational and numerical solutions for the steady discrete Sine-Gordon equation in two space dimensions,, Physica D, 238 (2009), 1229.   Google Scholar

[22]

J.G. Caputo and M.P. Soerensen, Radial sine-Gordon kinks as sources of fast breathers,, Phys. Rev. E, 88 (2013).   Google Scholar

[1]

Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Klein-gordon equation. Discrete & Continuous Dynamical Systems - S, 2020  doi: 10.3934/dcdss.2020448

[2]

Zheng Han, Daoyuan Fang. Almost global existence for the Klein-Gordon equation with the Kirchhoff-type nonlinearity. Communications on Pure & Applied Analysis, , () : -. doi: 10.3934/cpaa.2020287

[3]

Neng Zhu, Zhengrong Liu, Fang Wang, Kun Zhao. Asymptotic dynamics of a system of conservation laws from chemotaxis. Discrete & Continuous Dynamical Systems - A, 2021, 41 (2) : 813-847. doi: 10.3934/dcds.2020301

[4]

Constantine M. Dafermos. A variational approach to the Riemann problem for hyperbolic conservation laws. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 185-195. doi: 10.3934/dcds.2009.23.185

[5]

Xiu Ye, Shangyou Zhang, Peng Zhu. A weak Galerkin finite element method for nonlinear conservation laws. Electronic Research Archive, 2021, 29 (1) : 1897-1923. doi: 10.3934/era.2020097

[6]

Michiel Bertsch, Flavia Smarrazzo, Andrea Terracina, Alberto Tesei. Signed Radon measure-valued solutions of flux saturated scalar conservation laws. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3143-3169. doi: 10.3934/dcds.2020041

[7]

Yantao Wang, Linlin Su. Monotone and nonmonotone clines with partial panmixia across a geographical barrier. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 4019-4037. doi: 10.3934/dcds.2020056

[8]

C. J. Price. A modified Nelder-Mead barrier method for constrained optimization. Numerical Algebra, Control & Optimization, 2020  doi: 10.3934/naco.2020058

[9]

Toshiko Ogiwara, Danielle Hilhorst, Hiroshi Matano. Convergence and structure theorems for order-preserving dynamical systems with mass conservation. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3883-3907. doi: 10.3934/dcds.2020129

[10]

Shin-Ichiro Ei, Shyuh-Yaur Tzeng. Spike solutions for a mass conservation reaction-diffusion system. Discrete & Continuous Dynamical Systems - A, 2020, 40 (6) : 3357-3374. doi: 10.3934/dcds.2020049

[11]

Anna Abbatiello, Eduard Feireisl, Antoní Novotný. Generalized solutions to models of compressible viscous fluids. Discrete & Continuous Dynamical Systems - A, 2021, 41 (1) : 1-28. doi: 10.3934/dcds.2020345

[12]

Xin Guo, Lexin Li, Qiang Wu. Modeling interactive components by coordinate kernel polynomial models. Mathematical Foundations of Computing, 2020, 3 (4) : 263-277. doi: 10.3934/mfc.2020010

[13]

Urszula Ledzewicz, Heinz Schättler. On the role of pharmacometrics in mathematical models for cancer treatments. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 483-499. doi: 10.3934/dcdsb.2020213

[14]

P. K. Jha, R. Lipton. Finite element approximation of nonlocal dynamic fracture models. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1675-1710. doi: 10.3934/dcdsb.2020178

[15]

Javier Fernández, Cora Tori, Marcela Zuccalli. Lagrangian reduction of nonholonomic discrete mechanical systems by stages. Journal of Geometric Mechanics, 2020, 12 (4) : 607-639. doi: 10.3934/jgm.2020029

[16]

Xu Zhang, Chuang Zheng, Enrique Zuazua. Time discrete wave equations: Boundary observability and control. Discrete & Continuous Dynamical Systems - A, 2009, 23 (1&2) : 571-604. doi: 10.3934/dcds.2009.23.571

[17]

Angelica Pachon, Federico Polito, Costantino Ricciuti. On discrete-time semi-Markov processes. Discrete & Continuous Dynamical Systems - B, 2021, 26 (3) : 1499-1529. doi: 10.3934/dcdsb.2020170

[18]

Wei Feng, Michael Freeze, Xin Lu. On competition models under allee effect: Asymptotic behavior and traveling waves. Communications on Pure & Applied Analysis, 2020, 19 (12) : 5609-5626. doi: 10.3934/cpaa.2020256

[19]

Zhimin Li, Tailei Zhang, Xiuqing Li. Threshold dynamics of stochastic models with time delays: A case study for Yunnan, China. Electronic Research Archive, 2021, 29 (1) : 1661-1679. doi: 10.3934/era.2020085

[20]

Evelyn Sander, Thomas Wanner. Equilibrium validation in models for pattern formation based on Sobolev embeddings. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 603-632. doi: 10.3934/dcdsb.2020260

 Impact Factor: 

Metrics

  • PDF downloads (65)
  • HTML views (0)
  • Cited by (0)

[Back to Top]