[1]

J. CuevasMaraver, P.G. Kevrekidis and F. Williams (Eds.), The sineGordon model and its applications: From pendula and Josephson Junctions to Gravity and HighEnergy Physics, SpringerVerlag, Heidelberg, 2014.

[2]

R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, and H.C. Morris, Solitons and Nonlinear Wave Equations, Academic, New York, 1983.

[3]

N. Boechler, G. Theocharis, S. Job, P. G. Kevrekidis, M. A. Porter, and C. Daraio, Discrete Breathers in OneDimensional Diatomic Granular Crystals Phys. Rev. Lett., 104, (2010), 244302.

[4]

M. Peyrard and M.D. Kruskal, Kink dynamics in the highly discrete sineGordon system, Physica D, 14, (1984), 88102.

[5]

S.V. Dmitriev, P.G. Kevrekidis and N. Yoshikawa, Standard nearestneighbour discretizations of KleinGordon models cannot preserve both energy and linear momentum, J. Phys. A, 39, (2006), 72177226.

[6]

Y. S. Kivshar and D. K. Campbell, PeierlsNabarro potential for highly localized nonlinear modes Phys. Rev. E , 48, (1993), 30773081.

[7]

S.V. Dmitriev, P.G. Kevrekidis, N. Yoshikawa, Discrete KleinGordon models with static kinks free of the PeierlsNabarro potential, J. Phys. A, 38, (2005), 76177627.

[8]

C.M. Marle, Rep. Math. Phys. Various approaches to conservative and nonconservative nonholonomic systems, 42 (1998) , 211229.

[9]

H. Cendra and S. Grillo, Lagrangian systems with higher order constraints, J. Math. Phys. 47 (2006), 022902.

[10]

V. I. Arnold, V. V. Kozlov and A. I. Neistadt, Mathematical Methods of Classical and Celestial Mechanics, 3rd Ed, Springer (2006).

[11]

M. Remoissenet, Waves called solitons, SpringerVerlag, Berlin, 1999.

[12]

T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2006.

[13]

R.S. MacKay and S. Aubry, Proof of existence of breathers for timereversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity, 7, (1994), 16231643.

[14]

S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization Physica D, 103, (1997), 201250.

[15]

P.G. Kevrekidis, Nonlinear waves in lattices: past, present, future, IMA J. Appl. Math., 76, (2011), 389423.

[16]

D.E. Pelinovsky, Translationally invariant nonlinear Schrödinger lattices Nonlinearity, 19, (2006), 26952715.

[17]

P.G. Kevrekidis, On a class of discretizations of Hamiltonian nonlinear partial differential equations, Physica D, 183, (2003), 6886.

[18]

A. A. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, Springer, 2009.

[19]

V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Encyclopedia of Mathematical Sciences, Springer, 2007.

[20]

S. Flach and A.V. Gorbach, Discrete breathersdvances in theory and applications, Phys. Rep., 467, (2008), 1116.

[21]

L.A. Cisneros, J. Ize and A.A. Minzoni, Modulational and numerical solutions for the steady discrete SineGordon equation in two space dimensions, Physica D, 238, (2009), 12291240.

[22]

J.G. Caputo and M.P. Soerensen, Radial sineGordon kinks as sources of fast breathers, Phys. Rev. E, 88, (2013), 022915.
