
Previous Article
Reduction of a kinetic model of active export of importins
 PROC Home
 This Issue

Next Article
Enhanced choice of the parameters in an iteratively regularized NewtonLandweber iteration in Banach space
Nonholonomic constraints and their impact on discretizations of KleinGordon lattice dynamical models
1.  Department of Mathematics and Statistics, University of Massachusetts, Amherst, MA 010034515 
2.  Department of Mathematical and Statistical Sciences, University of Alberta, Edmonton AB T6G 2G1 
3.  Department of Mathematics, University of Illinois at UrbanaChampaign, Urbana, Illinois 618012975, United States 
References:
show all references
References:
[1] 
Yuan Gao, JianGuo Liu, Tao Luo, Yang Xiang. Revisit of the PeierlsNabarro model for edge dislocations in Hilbert space. Discrete and Continuous Dynamical Systems  B, 2021, 26 (6) : 31773207. doi: 10.3934/dcdsb.2020224 
[2] 
Alexander Bobylev, Mirela Vinerean, Åsa Windfäll. Discrete velocity models of the Boltzmann equation and conservation laws. Kinetic and Related Models, 2010, 3 (1) : 3558. doi: 10.3934/krm.2010.3.35 
[3] 
Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8 (2) : 433463. doi: 10.3934/nhm.2013.8.433 
[4] 
Andrew Comech. Weak attractor of the KleinGordon field in discrete spacetime interacting with a nonlinear oscillator. Discrete and Continuous Dynamical Systems, 2013, 33 (7) : 27112755. doi: 10.3934/dcds.2013.33.2711 
[5] 
Olivier Goubet, Marilena N. Poulou. Semi discrete weakly damped nonlinear KleinGordon Schrödinger system. Communications on Pure and Applied Analysis, 2014, 13 (4) : 15251539. doi: 10.3934/cpaa.2014.13.1525 
[6] 
Len G. Margolin, Roy S. Baty. Conservation laws in discrete geometry. Journal of Geometric Mechanics, 2019, 11 (2) : 187203. doi: 10.3934/jgm.2019010 
[7] 
Marcelo M. Cavalcanti, Leonel G. Delatorre, Daiane C. Soares, Victor Hugo Gonzalez Martinez, Janaina P. Zanchetta. Uniform stabilization of the KleinGordon system. Communications on Pure and Applied Analysis, 2020, 19 (11) : 51315156. doi: 10.3934/cpaa.2020230 
[8] 
Hironobu Sasaki. Remark on the scattering problem for the KleinGordon equation with power nonlinearity. Conference Publications, 2007, 2007 (Special) : 903911. doi: 10.3934/proc.2007.2007.903 
[9] 
Satoshi Masaki, Junichi Segata. Modified scattering for the KleinGordon equation with the critical nonlinearity in three dimensions. Communications on Pure and Applied Analysis, 2018, 17 (4) : 15951611. doi: 10.3934/cpaa.2018076 
[10] 
Karen Yagdjian. The semilinear KleinGordon equation in de Sitter spacetime. Discrete and Continuous Dynamical Systems  S, 2009, 2 (3) : 679696. doi: 10.3934/dcdss.2009.2.679 
[11] 
Aslihan Demirkaya, Panayotis G. Kevrekidis, Milena Stanislavova, Atanas Stefanov. Spectral stability analysis for standing waves of a perturbed KleinGordon equation. Conference Publications, 2015, 2015 (special) : 359368. doi: 10.3934/proc.2015.0359 
[12] 
Benoît Grébert, Tiphaine Jézéquel, Laurent Thomann. Dynamics of KleinGordon on a compact surface near a homoclinic orbit. Discrete and Continuous Dynamical Systems, 2014, 34 (9) : 34853510. doi: 10.3934/dcds.2014.34.3485 
[13] 
Stefano Pasquali. A Nekhoroshev type theorem for the nonlinear KleinGordon equation with potential. Discrete and Continuous Dynamical Systems  B, 2018, 23 (9) : 35733594. doi: 10.3934/dcdsb.2017215 
[14] 
Elena Kopylova. On dispersion decay for 3D KleinGordon equation. Discrete and Continuous Dynamical Systems, 2018, 38 (11) : 57655780. doi: 10.3934/dcds.2018251 
[15] 
ChiKun Lin, KungChien Wu. On the fluid dynamical approximation to the nonlinear KleinGordon equation. Discrete and Continuous Dynamical Systems, 2012, 32 (6) : 22332251. doi: 10.3934/dcds.2012.32.2233 
[16] 
Hironobu Sasaki. Small data scattering for the KleinGordon equation with cubic convolution nonlinearity. Discrete and Continuous Dynamical Systems, 2006, 15 (3) : 973981. doi: 10.3934/dcds.2006.15.973 
[17] 
Masahito Ohta, Grozdena Todorova. Strong instability of standing waves for nonlinear KleinGordon equations. Discrete and Continuous Dynamical Systems, 2005, 12 (2) : 315322. doi: 10.3934/dcds.2005.12.315 
[18] 
Jun Yang. Vortex structures for KleinGordon equation with GinzburgLandau nonlinearity. Discrete and Continuous Dynamical Systems, 2014, 34 (5) : 23592388. doi: 10.3934/dcds.2014.34.2359 
[19] 
Thierry Cazenave, Ivan Naumkin. Local smooth solutions of the nonlinear Kleingordon equation. Discrete and Continuous Dynamical Systems  S, 2021, 14 (5) : 16491672. doi: 10.3934/dcdss.2020448 
[20] 
Marco Ghimenti, Stefan Le Coz, Marco Squassina. On the stability of standing waves of KleinGordon equations in a semiclassical regime. Discrete and Continuous Dynamical Systems, 2013, 33 (6) : 23892401. doi: 10.3934/dcds.2013.33.2389 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]