[1]
|
J. Cuevas-Maraver, P.G. Kevrekidis and F. Williams (Eds.), The sine-Gordon model and its applications: From pendula and Josephson Junctions to Gravity and High-Energy Physics, Springer-Verlag, Heidelberg, 2014.
|
[2]
|
R.K. Dodd, J.C. Eilbeck, J.D. Gibbon, and H.C. Morris, Solitons and Nonlinear Wave Equations, Academic, New York, 1983.
|
[3]
|
N. Boechler, G. Theocharis, S. Job, P. G. Kevrekidis, M. A. Porter, and C. Daraio, Discrete Breathers in One-Dimensional Diatomic Granular Crystals Phys. Rev. Lett., 104, (2010), 244302.
|
[4]
|
M. Peyrard and M.D. Kruskal, Kink dynamics in the highly discrete sine-Gordon system, Physica D, 14, (1984), 88-102.
|
[5]
|
S.V. Dmitriev, P.G. Kevrekidis and N. Yoshikawa, Standard nearest-neighbour discretizations of Klein-Gordon models cannot preserve both energy and linear momentum, J. Phys. A, 39, (2006), 7217-7226.
|
[6]
|
Y. S. Kivshar and D. K. Campbell, Peierls-Nabarro potential for highly localized nonlinear modes Phys. Rev. E , 48, (1993), 3077-3081.
|
[7]
|
S.V. Dmitriev, P.G. Kevrekidis, N. Yoshikawa, Discrete Klein-Gordon models with static kinks free of the Peierls-Nabarro potential, J. Phys. A, 38, (2005), 7617-7627.
|
[8]
|
C.-M. Marle, Rep. Math. Phys. Various approaches to conservative and nonconservative nonholonomic systems, 42 (1998) , 211-229.
|
[9]
|
H. Cendra and S. Grillo, Lagrangian systems with higher order constraints, J. Math. Phys. 47 (2006), 022902.
|
[10]
|
V. I. Arnold, V. V. Kozlov and A. I. Neistadt, Mathematical Methods of Classical and Celestial Mechanics, 3rd Ed, Springer (2006).
|
[11]
|
M. Remoissenet, Waves called solitons, Springer-Verlag, Berlin, 1999.
|
[12]
|
T. Dauxois and M. Peyrard, Physics of Solitons, Cambridge University Press, Cambridge, 2006.
|
[13]
|
R.S. MacKay and S. Aubry, Proof of existence of breathers for time-reversible or Hamiltonian networks of weakly coupled oscillators, Nonlinearity, 7, (1994), 1623-1643.
|
[14]
|
S. Aubry, Breathers in nonlinear lattices: existence, linear stability and quantization Physica D, 103, (1997), 201-250.
|
[15]
|
P.G. Kevrekidis, Non-linear waves in lattices: past, present, future, IMA J. Appl. Math., 76, (2011), 389-423.
|
[16]
|
D.E. Pelinovsky, Translationally invariant nonlinear Schrödinger lattices Nonlinearity, 19, (2006), 2695-2715.
|
[17]
|
P.G. Kevrekidis, On a class of discretizations of Hamiltonian nonlinear partial differential equations, Physica D, 183, (2003), 68-86.
|
[18]
|
A. A. Bloch, Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, Springer, 2009.
|
[19]
|
V. I. Arnold, V. V. Kozlov and A. I. Neishtadt, Mathematical aspects of classical and celestial mechanics, Encyclopedia of Mathematical Sciences, Springer, 2007.
|
[20]
|
S. Flach and A.V. Gorbach, Discrete breathersdvances in theory and applications, Phys. Rep., 467, (2008), 1-116.
|
[21]
|
L.A. Cisneros, J. Ize and A.A. Minzoni, Modulational and numerical solutions for the steady discrete Sine-Gordon equation in two space dimensions, Physica D, 238, (2009), 1229-1240.
|
[22]
|
J.G. Caputo and M.P. Soerensen, Radial sine-Gordon kinks as sources of fast breathers, Phys. Rev. E, 88, (2013), 022915.
|