
Previous Article
On control synthesis for uncertain dynamical discretetime systems through polyhedral techniques
 PROC Home
 This Issue

Next Article
Nonholonomic constraints and their impact on discretizations of KleinGordon lattice dynamical models
Reduction of a kinetic model of active export of importins
1.  Department of Mathematics, University of Leicester, University Road, Leicester, LE1 7RH, United Kingdom 
References:
[1] 
A. N. Kolodkin, H. V. Westerhoff, F. J. Bruggeman, N. Plant, M. J. Moné, B. M. Bakker, M. J. Campbell, V. Leeuwen, P. T. M. Johannes, C. Carlberg and J. L. Snoep, Design principles of nuclear receptor signaling: how complex networking improves signal transduction,, Molecular Systems Biology, 6 (2010), 446. Google Scholar 
[2] 
O. Radulescu, A. N. Gorban, A. Zinovyev and A. Lilienbaum, Robust simplifications of multiscale biochemical networks,, BMC systems biology, 2 (2008), 86. Google Scholar 
[3] 
A. N. Gorban, O. Radulescu and A. Y. Zinovyev, Asymptotology of chemical reaction networks,, Chemical Engineering Science, 65 (2010), 2310. Google Scholar 
[4] 
R. HannemannTamás, A. Gábor, G. Szederkényi and K. M. Hangos, Model complexity reduction of chemical reaction networks using mixedinteger quadratic programming,, Computers and Mathematics with Applications, 65 (2013), 1575. Google Scholar 
[5] 
G. S. Yablonskii, V. I. Bykov, A. N. Gorban, V. I. Elohin, Kinetic Models of Catalytic Reactions,, Elsevier, (1991). Google Scholar 
[6] 
O. Radulescu, A. N. Gorban, A. Zinovyev and V. Noel, Reduction of dynamical biochemical reactions networks in computational biology,, Frontiers in genetics, 3 (2012), 131. Google Scholar 
[7] 
J. Choi, K. Yang, T. Lee and S. Y. Lee, New timescale criteria for model simplification of bioreaction systems,, BMC Bioinformatics, 9 (2008), 338. Google Scholar 
[8] 
Z. Huang, Y. Chu and J. Hahn, Model simplification procedure for signal transduction pathway models: An application to IL6 signaling,, Chemical Engineering Science, 65 (2010), 1964. Google Scholar 
[9] 
M. S. Okino and M. L. Mavrovouniotis, Simplification of Mathematical Models of Chemical Reaction Systems,, Chemical Reviews, 98 (1998), 391. Google Scholar 
[10] 
L. Petzold, Model reduction for chemical kinetics: An optimization approach,, AIChE Journal, 45 (1999), 869. Google Scholar 
[11] 
K. R. Schneider and T. Wilhelm, Model reduction by extended quasisteady state approximation,, J. Math. Biol., 40 (2000), 443. Google Scholar 
[12] 
N. Vora and P. Daoutidis, Nonlinear model reduction of chemical reaction systems,, AIChE Journal, 47 (2001), 2320. Google Scholar 
[13] 
E. Kutumova, A. Zinovyev, R. Sharipov and F. Kolpakov, Model composition through model reduction: a combined model of CD95 and NFkappaB signaling pathways,, BMC Systems Biology, 7 (2013), 13. Google Scholar 
[14] 
M. Bodenstein, Eine Theorie der Photochemischen Reaktionsgeschwindigkeiten,, Z. Phys. Chem., 85 (1913), 329. Google Scholar 
[15] 
G. E. Briggs and J. B. Haldane, A Note on the Kinetics of Enzyme Action,, Biochemical Journal, 19 (1925), 338. Google Scholar 
[16] 
L. A. Segel and M. Slemrod, The quasisteadystate assumption: A case study in perturbation,, SIAM Rev., 31 (1989), 446. Google Scholar 
[17] 
A. N. Gorban and M. Shahzad, The MichaelisMenten Stueckelberg Theorem,, Entropy, 13 (2011), 966. Google Scholar 
[18] 
A. S. Tomlin, M. J. Pilling, T. Turányi, J. H. Merkin and J. Brindley, Mechanism reduction for the oscillatory oxidation of hydrogen: sensitivity and quasisteady state analyses,, Combustion and Flame, 91 (1992), 107. Google Scholar 
[19] 
T. Turányi, Sensitivity analysis of complex kinetic systems, Tools and Applications,, Journal of mathematical chemistry, 5 (1990), 203. Google Scholar 
[20] 
Z. Zi, Sensitivity analysis approaches applied to systems biology models,, IET systems biology, 5 (2011), 336. Google Scholar 
[21] 
H. Rabitz, M. Kramer and D. Dacol, Sensitivity Analysis in Chemical Kinetics,, Annual Reviews Physics Chemistry, 34 (1983), 419. Google Scholar 
[22] 
SimBiology., Available from: http://usingsimBiologyforpharmacokineticandmechanisticmodeling &, http://www.mathworks.co.uk/products/simbiology/., (). Google Scholar 
[23] 
BioSens, Available, from: http://www.chemengr.ucsb.edu/ceweb/faculty/doyle/biosens/ BioSens.htm., (). Google Scholar 
[24] 
Z. Zi, Y. Zheng, A. E. Rundell and E. Klipp, SBMLSAT: A systems biology markup language (SBML) based sensitivity analysis tool,, BMC Bioinf., 9 (2008), 342. Google Scholar 
[25] 
H. Schmidt and M. Jirstrand, Systems biology toolbox for MATLAB: A computational platform for research in systems biology,, Bioinformatics, 22 (2006), 514. Google Scholar 
[26] 
M. RodriguezFernandez and J. R. Banga, SensSB: A software toolbox for the development and sensitivity analysis of systems biology models,, Bioinformatics, 26 (2010), 1675. Google Scholar 
[27] 
D. Chandran, F. T. Bergmann and H. M. Sauro, TinkerCell: modular CAD tool for synthetic biology,, J. Biol. Eng., 3 (2009), 19. Google Scholar 
[28] 
I. Segal, Nonlinear semigroups,, The Annals of Mathematics, 78 (1963), 339. Google Scholar 
[29] 
T. Tao, Nonlinear dispersive equations: local and global analysis,, CBMS Regional Conference Series in Mathematics, 106 (2006). Google Scholar 
show all references
References:
[1] 
A. N. Kolodkin, H. V. Westerhoff, F. J. Bruggeman, N. Plant, M. J. Moné, B. M. Bakker, M. J. Campbell, V. Leeuwen, P. T. M. Johannes, C. Carlberg and J. L. Snoep, Design principles of nuclear receptor signaling: how complex networking improves signal transduction,, Molecular Systems Biology, 6 (2010), 446. Google Scholar 
[2] 
O. Radulescu, A. N. Gorban, A. Zinovyev and A. Lilienbaum, Robust simplifications of multiscale biochemical networks,, BMC systems biology, 2 (2008), 86. Google Scholar 
[3] 
A. N. Gorban, O. Radulescu and A. Y. Zinovyev, Asymptotology of chemical reaction networks,, Chemical Engineering Science, 65 (2010), 2310. Google Scholar 
[4] 
R. HannemannTamás, A. Gábor, G. Szederkényi and K. M. Hangos, Model complexity reduction of chemical reaction networks using mixedinteger quadratic programming,, Computers and Mathematics with Applications, 65 (2013), 1575. Google Scholar 
[5] 
G. S. Yablonskii, V. I. Bykov, A. N. Gorban, V. I. Elohin, Kinetic Models of Catalytic Reactions,, Elsevier, (1991). Google Scholar 
[6] 
O. Radulescu, A. N. Gorban, A. Zinovyev and V. Noel, Reduction of dynamical biochemical reactions networks in computational biology,, Frontiers in genetics, 3 (2012), 131. Google Scholar 
[7] 
J. Choi, K. Yang, T. Lee and S. Y. Lee, New timescale criteria for model simplification of bioreaction systems,, BMC Bioinformatics, 9 (2008), 338. Google Scholar 
[8] 
Z. Huang, Y. Chu and J. Hahn, Model simplification procedure for signal transduction pathway models: An application to IL6 signaling,, Chemical Engineering Science, 65 (2010), 1964. Google Scholar 
[9] 
M. S. Okino and M. L. Mavrovouniotis, Simplification of Mathematical Models of Chemical Reaction Systems,, Chemical Reviews, 98 (1998), 391. Google Scholar 
[10] 
L. Petzold, Model reduction for chemical kinetics: An optimization approach,, AIChE Journal, 45 (1999), 869. Google Scholar 
[11] 
K. R. Schneider and T. Wilhelm, Model reduction by extended quasisteady state approximation,, J. Math. Biol., 40 (2000), 443. Google Scholar 
[12] 
N. Vora and P. Daoutidis, Nonlinear model reduction of chemical reaction systems,, AIChE Journal, 47 (2001), 2320. Google Scholar 
[13] 
E. Kutumova, A. Zinovyev, R. Sharipov and F. Kolpakov, Model composition through model reduction: a combined model of CD95 and NFkappaB signaling pathways,, BMC Systems Biology, 7 (2013), 13. Google Scholar 
[14] 
M. Bodenstein, Eine Theorie der Photochemischen Reaktionsgeschwindigkeiten,, Z. Phys. Chem., 85 (1913), 329. Google Scholar 
[15] 
G. E. Briggs and J. B. Haldane, A Note on the Kinetics of Enzyme Action,, Biochemical Journal, 19 (1925), 338. Google Scholar 
[16] 
L. A. Segel and M. Slemrod, The quasisteadystate assumption: A case study in perturbation,, SIAM Rev., 31 (1989), 446. Google Scholar 
[17] 
A. N. Gorban and M. Shahzad, The MichaelisMenten Stueckelberg Theorem,, Entropy, 13 (2011), 966. Google Scholar 
[18] 
A. S. Tomlin, M. J. Pilling, T. Turányi, J. H. Merkin and J. Brindley, Mechanism reduction for the oscillatory oxidation of hydrogen: sensitivity and quasisteady state analyses,, Combustion and Flame, 91 (1992), 107. Google Scholar 
[19] 
T. Turányi, Sensitivity analysis of complex kinetic systems, Tools and Applications,, Journal of mathematical chemistry, 5 (1990), 203. Google Scholar 
[20] 
Z. Zi, Sensitivity analysis approaches applied to systems biology models,, IET systems biology, 5 (2011), 336. Google Scholar 
[21] 
H. Rabitz, M. Kramer and D. Dacol, Sensitivity Analysis in Chemical Kinetics,, Annual Reviews Physics Chemistry, 34 (1983), 419. Google Scholar 
[22] 
SimBiology., Available from: http://usingsimBiologyforpharmacokineticandmechanisticmodeling &, http://www.mathworks.co.uk/products/simbiology/., (). Google Scholar 
[23] 
BioSens, Available, from: http://www.chemengr.ucsb.edu/ceweb/faculty/doyle/biosens/ BioSens.htm., (). Google Scholar 
[24] 
Z. Zi, Y. Zheng, A. E. Rundell and E. Klipp, SBMLSAT: A systems biology markup language (SBML) based sensitivity analysis tool,, BMC Bioinf., 9 (2008), 342. Google Scholar 
[25] 
H. Schmidt and M. Jirstrand, Systems biology toolbox for MATLAB: A computational platform for research in systems biology,, Bioinformatics, 22 (2006), 514. Google Scholar 
[26] 
M. RodriguezFernandez and J. R. Banga, SensSB: A software toolbox for the development and sensitivity analysis of systems biology models,, Bioinformatics, 26 (2010), 1675. Google Scholar 
[27] 
D. Chandran, F. T. Bergmann and H. M. Sauro, TinkerCell: modular CAD tool for synthetic biology,, J. Biol. Eng., 3 (2009), 19. Google Scholar 
[28] 
I. Segal, Nonlinear semigroups,, The Annals of Mathematics, 78 (1963), 339. Google Scholar 
[29] 
T. Tao, Nonlinear dispersive equations: local and global analysis,, CBMS Regional Conference Series in Mathematics, 106 (2006). Google Scholar 
[1] 
Lena Noethen, Sebastian Walcher. Tikhonov's theorem and quasisteady state. Discrete & Continuous Dynamical Systems  B, 2011, 16 (3) : 945961. doi: 10.3934/dcdsb.2011.16.945 
[2] 
ClaudeMichel Brauner, Josephus Hulshof, Luca Lorenzi, Gregory I. Sivashinsky. A fully nonlinear equation for the flame front in a quasisteady combustion model. Discrete & Continuous Dynamical Systems  A, 2010, 27 (4) : 14151446. doi: 10.3934/dcds.2010.27.1415 
[3] 
Murat Arcak, Eduardo D. Sontag. A passivitybased stability criterion for a class of biochemical reaction networks. Mathematical Biosciences & Engineering, 2008, 5 (1) : 119. doi: 10.3934/mbe.2008.5.1 
[4] 
Federica Di Michele, Bruno Rubino, Rosella Sampalmieri. A steadystate mathematical model for an EOS capacitor: The effect of the size exclusion. Networks & Heterogeneous Media, 2016, 11 (4) : 603625. doi: 10.3934/nhm.2016011 
[5] 
SzeBi Hsu, FengBin Wang. On a mathematical model arising from competition of Phytoplankton species for a single nutrient with internal storage: steady state analysis. Communications on Pure & Applied Analysis, 2011, 10 (5) : 14791501. doi: 10.3934/cpaa.2011.10.1479 
[6] 
Theodore Kolokolnikov, Michael J. Ward, Juncheng Wei. The stability of steadystate hotspot patterns for a reactiondiffusion model of urban crime. Discrete & Continuous Dynamical Systems  B, 2014, 19 (5) : 13731410. doi: 10.3934/dcdsb.2014.19.1373 
[7] 
Junping Shi, Jimin Zhang, Xiaoyan Zhang. Stability and asymptotic profile of steady state solutions to a reactiondiffusion pelagicbenthic algae growth model. Communications on Pure & Applied Analysis, 2019, 18 (5) : 23252347. doi: 10.3934/cpaa.2019105 
[8] 
Thomas Lepoutre, Salomé Martínez. Steady state analysis for a relaxed cross diffusion model. Discrete & Continuous Dynamical Systems  A, 2014, 34 (2) : 613633. doi: 10.3934/dcds.2014.34.613 
[9] 
Qi Wang. On the steady state of a shadow system to the SKT competition model. Discrete & Continuous Dynamical Systems  B, 2014, 19 (9) : 29412961. doi: 10.3934/dcdsb.2014.19.2941 
[10] 
Samira Boussaïd, Danielle Hilhorst, Thanh Nam Nguyen. Convergence to steady state for the solutions of a nonlocal reactiondiffusion equation. Evolution Equations & Control Theory, 2015, 4 (1) : 3959. doi: 10.3934/eect.2015.4.39 
[11] 
Alessandro Bertuzzi, Alberto d'Onofrio, Antonio Fasano, Alberto Gandolfi. Modelling cell populations with spatial structure: Steady state and treatmentinduced evolution. Discrete & Continuous Dynamical Systems  B, 2004, 4 (1) : 161186. doi: 10.3934/dcdsb.2004.4.161 
[12] 
Gabriella Bretti, Roberto Natalini, Benedetto Piccoli. Fast algorithms for the approximation of a traffic flow model on networks. Discrete & Continuous Dynamical Systems  B, 2006, 6 (3) : 427448. doi: 10.3934/dcdsb.2006.6.427 
[13] 
Martin Redmann, Peter Benner. Approximation and model order reduction for second order systems with Levynoise. Conference Publications, 2015, 2015 (special) : 945953. doi: 10.3934/proc.2015.0945 
[14] 
Alan D. Rendall. Multiple steady states in a mathematical model for interactions between T cells and macrophages. Discrete & Continuous Dynamical Systems  B, 2013, 18 (3) : 769782. doi: 10.3934/dcdsb.2013.18.769 
[15] 
Antonio Fasano, Marco Gabrielli, Alberto Gandolfi. Investigating the steady state of multicellular spheroids by revisiting the twofluid model. Mathematical Biosciences & Engineering, 2011, 8 (2) : 239252. doi: 10.3934/mbe.2011.8.239 
[16] 
Lijuan Wang, Hongling Jiang, Ying Li. Positive steady state solutions of a plantpollinator model with diffusion. Discrete & Continuous Dynamical Systems  B, 2015, 20 (6) : 18051819. doi: 10.3934/dcdsb.2015.20.1805 
[17] 
Youcef Mammeri, Damien Sellier. A surface model of nonlinear, nonsteadystate phloem transport. Mathematical Biosciences & Engineering, 2017, 14 (4) : 10551069. doi: 10.3934/mbe.2017055 
[18] 
Meihua Wei, Jianhua Wu, Yinnian He. Steadystate solutions and stability for a cubic autocatalysis model. Communications on Pure & Applied Analysis, 2015, 14 (3) : 11471167. doi: 10.3934/cpaa.2015.14.1147 
[19] 
Hua Nie, Wenhao Xie, Jianhua Wu. Uniqueness of positive steady state solutions to the unstirred chemostat model with external inhibitor. Communications on Pure & Applied Analysis, 2013, 12 (3) : 12791297. doi: 10.3934/cpaa.2013.12.1279 
[20] 
Zhenzhen Zheng, ChingShan Chou, TauMu Yi, Qing Nie. Mathematical analysis of steadystate solutions in compartment and continuum models of cell polarization. Mathematical Biosciences & Engineering, 2011, 8 (4) : 11351168. doi: 10.3934/mbe.2011.8.1135 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]