-
Previous Article
Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model
- PROC Home
- This Issue
-
Next Article
Reduction of a kinetic model of active export of importins
On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques
1. | N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaja street, Ekaterinburg, 620990, Russian Federation |
References:
[1] |
Dokl. Akad. Nauk, 434, no. 3 (2010), 319-323 [Russian], Transl. as Dokl. Math., 82 (2010), 831-834. |
[2] |
in Modeling Techniques for Uncertain Systems (Sopron, 1992), (eds. A. B. Kurzhanski and V. M. Veliov), Progr. Systems Control Theory, vol. 18, Birkhäser, Boston (1994), 71-92. |
[3] |
Nauka, Moscow, 1987 [Russian]. |
[4] |
IEEE Trans. Automat. Control., AC-24 (1979), 346-349. |
[5] |
CRC Press, Boca Raton, 1994. Google Scholar |
[6] |
Zh. Vychisl. Mat. Mat. Fiz., 53, no.1 (2013), 47-57 [Russian], Transl. as Comput. Math. Math. Phys., 53, no.1 (2013), 34-43. |
[7] |
Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications, 8th AIMS Conference, Suppl. vol. I (2011), 410-419. |
[8] |
Avtomat. i Telemekh., no. 3 (2012), 39-51 [Russian], Transl. as Autom. Remote Control, 73 (2012), 450-461. |
[9] |
Optim. Methods Softw., 14 (2001), 267-310. |
[10] |
Computational Technologies, 8 (2003), 55-74 [Russian; also available from: http://www.ict.nsc.ru/jct/search/article?l=eng]. Google Scholar |
[11] |
Algorithms and Software for Parallel Computations, Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, vol.9, (2006), 84-105 [Russian]. |
[12] |
Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications, 8th AIMS Conference, Suppl. vol. II (2011), 864-873. |
[13] |
AIP Conf. Proc., 1493 (2012), 579-586; doi: http://dx.doi.org/10.1063/1.4765545. Google Scholar |
[14] |
Nauka, Moscow, 1974 [Russian]. |
[15] |
Problemy Upravlen. Inform., no.1 (2010), 5-21 [Russian], Transl. as J. Automation and Inform. Sci., 42 (2010), 1-18. |
[16] |
Mat. Sb. 191, no. 6 (2000), 69-100 [Russian], Transl. as Sb. Math., 191 (2000), 849-881. |
[17] |
Dokl. Akad. Nauk SSSR, 311, no. 4 (1990), 788-793 [Russian], Transl. as Soviet Math. Doklady, 41 (1990), 300-305. |
[18] |
Birkhäuser, Boston, 1997. |
[19] |
Birkhäuser Basel, 2014. |
[20] |
SIAM Journal of Optimization, 9 (1998), 112-147. |
[21] |
Nauka, Moscow, 2002 [Russian]. Google Scholar |
[22] |
Cambridge Univ. Press, Cambridge, 1993. |
[23] |
Izv. Ross. Akad. Nauk Tekhn. Kibernet., no. 3 (1994) 173-185 [Russian], Transl. as J. Comput. Systems Sci. Internat., 33, no.6 (1995), 127-139. |
[24] |
Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, 2005 [Russian]. |
[25] |
Izv. Akad. Nauk Teor. Sist. Upr., no.3 (2000), 70-77 [Russian]. |
[26] |
Systems Control Lett., 13, no.3 (1989), 263-269. |
show all references
References:
[1] |
Dokl. Akad. Nauk, 434, no. 3 (2010), 319-323 [Russian], Transl. as Dokl. Math., 82 (2010), 831-834. |
[2] |
in Modeling Techniques for Uncertain Systems (Sopron, 1992), (eds. A. B. Kurzhanski and V. M. Veliov), Progr. Systems Control Theory, vol. 18, Birkhäser, Boston (1994), 71-92. |
[3] |
Nauka, Moscow, 1987 [Russian]. |
[4] |
IEEE Trans. Automat. Control., AC-24 (1979), 346-349. |
[5] |
CRC Press, Boca Raton, 1994. Google Scholar |
[6] |
Zh. Vychisl. Mat. Mat. Fiz., 53, no.1 (2013), 47-57 [Russian], Transl. as Comput. Math. Math. Phys., 53, no.1 (2013), 34-43. |
[7] |
Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications, 8th AIMS Conference, Suppl. vol. I (2011), 410-419. |
[8] |
Avtomat. i Telemekh., no. 3 (2012), 39-51 [Russian], Transl. as Autom. Remote Control, 73 (2012), 450-461. |
[9] |
Optim. Methods Softw., 14 (2001), 267-310. |
[10] |
Computational Technologies, 8 (2003), 55-74 [Russian; also available from: http://www.ict.nsc.ru/jct/search/article?l=eng]. Google Scholar |
[11] |
Algorithms and Software for Parallel Computations, Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, vol.9, (2006), 84-105 [Russian]. |
[12] |
Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications, 8th AIMS Conference, Suppl. vol. II (2011), 864-873. |
[13] |
AIP Conf. Proc., 1493 (2012), 579-586; doi: http://dx.doi.org/10.1063/1.4765545. Google Scholar |
[14] |
Nauka, Moscow, 1974 [Russian]. |
[15] |
Problemy Upravlen. Inform., no.1 (2010), 5-21 [Russian], Transl. as J. Automation and Inform. Sci., 42 (2010), 1-18. |
[16] |
Mat. Sb. 191, no. 6 (2000), 69-100 [Russian], Transl. as Sb. Math., 191 (2000), 849-881. |
[17] |
Dokl. Akad. Nauk SSSR, 311, no. 4 (1990), 788-793 [Russian], Transl. as Soviet Math. Doklady, 41 (1990), 300-305. |
[18] |
Birkhäuser, Boston, 1997. |
[19] |
Birkhäuser Basel, 2014. |
[20] |
SIAM Journal of Optimization, 9 (1998), 112-147. |
[21] |
Nauka, Moscow, 2002 [Russian]. Google Scholar |
[22] |
Cambridge Univ. Press, Cambridge, 1993. |
[23] |
Izv. Ross. Akad. Nauk Tekhn. Kibernet., no. 3 (1994) 173-185 [Russian], Transl. as J. Comput. Systems Sci. Internat., 33, no.6 (1995), 127-139. |
[24] |
Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, 2005 [Russian]. |
[25] |
Izv. Akad. Nauk Teor. Sist. Upr., no.3 (2000), 70-77 [Russian]. |
[26] |
Systems Control Lett., 13, no.3 (1989), 263-269. |
[1] |
Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021015 |
[2] |
Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021 doi: 10.3934/jcd.2021007 |
[3] |
Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021 doi: 10.3934/dcdsb.2021082 |
[4] |
Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021 doi: 10.3934/naco.2021010 |
[5] |
Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021021 |
[6] |
Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182 |
[7] |
Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183 |
[8] |
Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329 |
[9] |
Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375 |
[10] |
Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407 |
[11] |
Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021 doi: 10.3934/dcdss.2021036 |
[12] |
Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001 |
[13] |
Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021 doi: 10.3934/mcrf.2021014 |
[14] |
Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189 |
[15] |
Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248 |
[16] |
Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195 |
[17] |
John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021 doi: 10.3934/jdg.2021004 |
[18] |
Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1 |
[19] |
Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249 |
[20] |
Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185 |
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]