
Previous Article
Global existence and asymptotic behaviour of solutions for nonlinear evolution equations related to a tumour invasion model
 PROC Home
 This Issue

Next Article
Reduction of a kinetic model of active export of importins
On control synthesis for uncertain dynamical discretetime systems through polyhedral techniques
1.  N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaja street, Ekaterinburg, 620990, Russian Federation 
References:
[1] 
I. M. Anan'evskii, N. V. Anokhin and A. I. Ovseevich, Synthesis of a bounded control for linear dynamical systems using the general Lyapunov function,, Dokl. Akad. Nauk, 434 (2010), 319. Google Scholar 
[2] 
R. Baier and F. Lempio, Computing Aumann's integral,, in Modeling Techniques for Uncertain Systems (Sopron, 18 (1994), 71. Google Scholar 
[3] 
N. S. Bakhvalov, N. P. Zhidkov and G. M. Kobel'kov, Numerical Methods,, Nauka, (1987). Google Scholar 
[4] 
B. R. Barmish and J. Sankaran, The propagation of parametric uncertainty via polytopes,, IEEE Trans. Automat. Control., 24 (1979), 346. Google Scholar 
[5] 
F. L. Chernousko, State Estimation for Dynamic Systems,, CRC Press, (1994). Google Scholar 
[6] 
A. N. Daryin and A. B. Kurzhanski, Parallel algorithm for calculating the invariant sets of highdimensional linear systems under uncertainty,, Zh. Vychisl. Mat. Mat. Fiz., 53 (2013), 47. Google Scholar 
[7] 
T. Filippova, Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty,, Discrete Contin. Dyn. Syst. 2011, (2011), 410. Google Scholar 
[8] 
M. I. Gusev, External estimates of the reachability sets of nonlinear controlled systems,, Avtomat. i Telemekh., 73 (2012), 39. Google Scholar 
[9] 
E. K. Kostousova, Control synthesis via parallelotopes: optimization and parallel computations,, Optim. Methods Softw., 14 (2001), 267. Google Scholar 
[10] 
E. K. Kostousova, Polyhedral estimates for attainability sets of linear multistage systems with integral constraints on the control,, Computational Technologies, 8 (2003), 55. Google Scholar 
[11] 
E. K. Kostousova, On polyhedral estimates in problems of the synthesis of control strategies in linear multistep systems,, Algorithms and Software for Parallel Computations, 9 (2006), 84. Google Scholar 
[12] 
E. K. Kostousova, On polyhedral estimates for trajectory tubes of dynamical discretetime systems with multiplicative uncertainty,, Discrete Contin. Dyn. Syst. 2011, II (2011), 864. Google Scholar 
[13] 
E. K. Kostousova, On tight polyhedral estimates for reachable sets of linear differential systems,, AIP Conf. Proc., 1493 (2012), 579. Google Scholar 
[14] 
N. N. Krasovskii and A. I. Subbotin, Positional Differential Games,, Nauka, (1974). Google Scholar 
[15] 
V. M. Kuntsevich and A. B. Kurzhanski, Attainability domains for linear and some classes of nonlinear discrete systems and their control,, Problemy Upravlen. Inform., 42 (2010), 5. Google Scholar 
[16] 
A. B. Kurzhanskii and N. B. Mel'nikov, On the problem of the synthesis of controls: the Pontryagin alternative integral and the HamiltonJacobi equation,, Mat. Sb. 191, 191 (2000), 69. Google Scholar 
[17] 
A. B. Kurzhanski and O. I. Nikonov, On the problem of synthesizing control strategies. Evolution equations and setvalued integration,, Dokl. Akad. Nauk SSSR, 311 (1990), 788. Google Scholar 
[18] 
A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control,, Birkhäuser, (1997). Google Scholar 
[19] 
A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes. Theory and Computation (Systems & Control: Foundations & Applications, Book 85),, Birkhäuser Basel, (2014). Google Scholar 
[20] 
J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the NelderMead simplex method in low dimensions,, SIAM Journal of Optimization, 9 (1998), 112. Google Scholar 
[21] 
B. T. Polyak and P. S. Scherbakov, Robust Stability and Control,, Nauka, (2002). Google Scholar 
[22] 
R. G. Schneider, Convex Bodies: The BrunnMinkowski Theory,, Cambridge Univ. Press, (1993). Google Scholar 
[23] 
A. M. Taras'yev, A. A. Uspenskiy and V. N. Ushakov, Approximation schemas and finitedifference operators for constructing generalized solutions of HamiltonJacobi equations,, Izv. Ross. Akad. Nauk Tekhn. Kibernet., 33 (1994), 173. Google Scholar 
[24] 
V. V. Vasin and I. I. Eremin, Operators and Iterative Processes of Fejér Type. Theory and Applications,, Ross. Akad. Nauk Ural. Otdel., (2005). Google Scholar 
[25] 
A. Yu. Vazhentsev, Internal ellipsoidal approximations for problems of the synthesis of a control with bounded coordinates,, Izv. Akad. Nauk Teor. Sist. Upr., (2000), 70. Google Scholar 
[26] 
V. M. Veliov, Second order discrete approximations to strongly convex differential inclusions,, Systems Control Lett., 13 (1989), 263. Google Scholar 
show all references
References:
[1] 
I. M. Anan'evskii, N. V. Anokhin and A. I. Ovseevich, Synthesis of a bounded control for linear dynamical systems using the general Lyapunov function,, Dokl. Akad. Nauk, 434 (2010), 319. Google Scholar 
[2] 
R. Baier and F. Lempio, Computing Aumann's integral,, in Modeling Techniques for Uncertain Systems (Sopron, 18 (1994), 71. Google Scholar 
[3] 
N. S. Bakhvalov, N. P. Zhidkov and G. M. Kobel'kov, Numerical Methods,, Nauka, (1987). Google Scholar 
[4] 
B. R. Barmish and J. Sankaran, The propagation of parametric uncertainty via polytopes,, IEEE Trans. Automat. Control., 24 (1979), 346. Google Scholar 
[5] 
F. L. Chernousko, State Estimation for Dynamic Systems,, CRC Press, (1994). Google Scholar 
[6] 
A. N. Daryin and A. B. Kurzhanski, Parallel algorithm for calculating the invariant sets of highdimensional linear systems under uncertainty,, Zh. Vychisl. Mat. Mat. Fiz., 53 (2013), 47. Google Scholar 
[7] 
T. Filippova, Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty,, Discrete Contin. Dyn. Syst. 2011, (2011), 410. Google Scholar 
[8] 
M. I. Gusev, External estimates of the reachability sets of nonlinear controlled systems,, Avtomat. i Telemekh., 73 (2012), 39. Google Scholar 
[9] 
E. K. Kostousova, Control synthesis via parallelotopes: optimization and parallel computations,, Optim. Methods Softw., 14 (2001), 267. Google Scholar 
[10] 
E. K. Kostousova, Polyhedral estimates for attainability sets of linear multistage systems with integral constraints on the control,, Computational Technologies, 8 (2003), 55. Google Scholar 
[11] 
E. K. Kostousova, On polyhedral estimates in problems of the synthesis of control strategies in linear multistep systems,, Algorithms and Software for Parallel Computations, 9 (2006), 84. Google Scholar 
[12] 
E. K. Kostousova, On polyhedral estimates for trajectory tubes of dynamical discretetime systems with multiplicative uncertainty,, Discrete Contin. Dyn. Syst. 2011, II (2011), 864. Google Scholar 
[13] 
E. K. Kostousova, On tight polyhedral estimates for reachable sets of linear differential systems,, AIP Conf. Proc., 1493 (2012), 579. Google Scholar 
[14] 
N. N. Krasovskii and A. I. Subbotin, Positional Differential Games,, Nauka, (1974). Google Scholar 
[15] 
V. M. Kuntsevich and A. B. Kurzhanski, Attainability domains for linear and some classes of nonlinear discrete systems and their control,, Problemy Upravlen. Inform., 42 (2010), 5. Google Scholar 
[16] 
A. B. Kurzhanskii and N. B. Mel'nikov, On the problem of the synthesis of controls: the Pontryagin alternative integral and the HamiltonJacobi equation,, Mat. Sb. 191, 191 (2000), 69. Google Scholar 
[17] 
A. B. Kurzhanski and O. I. Nikonov, On the problem of synthesizing control strategies. Evolution equations and setvalued integration,, Dokl. Akad. Nauk SSSR, 311 (1990), 788. Google Scholar 
[18] 
A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control,, Birkhäuser, (1997). Google Scholar 
[19] 
A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes. Theory and Computation (Systems & Control: Foundations & Applications, Book 85),, Birkhäuser Basel, (2014). Google Scholar 
[20] 
J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the NelderMead simplex method in low dimensions,, SIAM Journal of Optimization, 9 (1998), 112. Google Scholar 
[21] 
B. T. Polyak and P. S. Scherbakov, Robust Stability and Control,, Nauka, (2002). Google Scholar 
[22] 
R. G. Schneider, Convex Bodies: The BrunnMinkowski Theory,, Cambridge Univ. Press, (1993). Google Scholar 
[23] 
A. M. Taras'yev, A. A. Uspenskiy and V. N. Ushakov, Approximation schemas and finitedifference operators for constructing generalized solutions of HamiltonJacobi equations,, Izv. Ross. Akad. Nauk Tekhn. Kibernet., 33 (1994), 173. Google Scholar 
[24] 
V. V. Vasin and I. I. Eremin, Operators and Iterative Processes of Fejér Type. Theory and Applications,, Ross. Akad. Nauk Ural. Otdel., (2005). Google Scholar 
[25] 
A. Yu. Vazhentsev, Internal ellipsoidal approximations for problems of the synthesis of a control with bounded coordinates,, Izv. Akad. Nauk Teor. Sist. Upr., (2000), 70. Google Scholar 
[26] 
V. M. Veliov, Second order discrete approximations to strongly convex differential inclusions,, Systems Control Lett., 13 (1989), 263. Google Scholar 
[1] 
Elena K. Kostousova. On polyhedral control synthesis for dynamical discretetime systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems  A, 2018, 38 (12) : 61496162. doi: 10.3934/dcds.2018153 
[2] 
Elena K. Kostousova. On polyhedral estimates for trajectory tubes of dynamical discretetime systems with multiplicative uncertainty. Conference Publications, 2011, 2011 (Special) : 864873. doi: 10.3934/proc.2011.2011.864 
[3] 
Hongyan Yan, Yun Sun, Yuanguo Zhu. A linearquadratic control problem of uncertain discretetime switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267282. doi: 10.3934/jimo.2016016 
[4] 
Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discretetime uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913930. doi: 10.3934/jimo.2017082 
[5] 
Chuandong Li, Fali Ma, Tingwen Huang. 2D analysis based iterative learning control for linear discretetime systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175181. doi: 10.3934/jimo.2011.7.175 
[6] 
Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete & Continuous Dynamical Systems  A, 2015, 35 (9) : 46654681. doi: 10.3934/dcds.2015.35.4665 
[7] 
Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discretetime coupled systems with multidiffusion by graphtheoretic approach and its application. Discrete & Continuous Dynamical Systems  B, 2016, 21 (1) : 253269. doi: 10.3934/dcdsb.2016.21.253 
[8] 
Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of nonlinear discretetime control dynamical systems. Conference Publications, 2013, 2013 (special) : 393406. doi: 10.3934/proc.2013.2013.393 
[9] 
Victor Kozyakin. Minimax joint spectral radius and stabilizability of discretetime linear switching control systems. Discrete & Continuous Dynamical Systems  B, 2019, 24 (8) : 35373556. doi: 10.3934/dcdsb.2018277 
[10] 
Vladimir Răsvan. On the central stability zone for linear discretetime Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734741. doi: 10.3934/proc.2003.2003.734 
[11] 
Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Framebound priority scheduling in discretetime queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767788. doi: 10.3934/jimo.2011.7.767 
[12] 
Xiang Xie, Honglei Xu, Xinming Cheng, Yilun Yu. Improved results on exponential stability of discretetime switched delay systems. Discrete & Continuous Dynamical Systems  B, 2017, 22 (1) : 199208. doi: 10.3934/dcdsb.2017010 
[13] 
Qiying Hu, Chen Xu, Wuyi Yue. A unified model for state feedback of discrete event systems II: Control synthesis problems. Journal of Industrial & Management Optimization, 2008, 4 (4) : 713726. doi: 10.3934/jimo.2008.4.713 
[14] 
Qingling Zhang, Guoliang Wang, Wanquan Liu, Yi Zhang. Stabilization of discretetime Markovian jump systems with partially unknown transition probabilities. Discrete & Continuous Dynamical Systems  B, 2011, 16 (4) : 11971211. doi: 10.3934/dcdsb.2011.16.1197 
[15] 
Zhongkui Li, Zhisheng Duan, Guanrong Chen. Consensus of discretetime linear multiagent systems with observertype protocols. Discrete & Continuous Dynamical Systems  B, 2011, 16 (2) : 489505. doi: 10.3934/dcdsb.2011.16.489 
[16] 
Deepak Kumar, Ahmad Jazlan, Victor Sreeram, Roberto Togneri. Partial fraction expansion based frequency weighted model reduction for discretetime systems. Numerical Algebra, Control & Optimization, 2016, 6 (3) : 329337. doi: 10.3934/naco.2016015 
[17] 
Yung Chung Wang, Jenn Shing Wang, Fu Hsiang Tsai. Analysis of discretetime space priority queue with fuzzy threshold. Journal of Industrial & Management Optimization, 2009, 5 (3) : 467479. doi: 10.3934/jimo.2009.5.467 
[18] 
Jianquan Li, Zhien Ma, Fred Brauer. Global analysis of discretetime SI and SIS epidemic models. Mathematical Biosciences & Engineering, 2007, 4 (4) : 699710. doi: 10.3934/mbe.2007.4.699 
[19] 
Alexander J. Zaslavski. The turnpike property of discretetime control problems arising in economic dynamics. Discrete & Continuous Dynamical Systems  B, 2005, 5 (3) : 861880. doi: 10.3934/dcdsb.2005.5.861 
[20] 
Shaohong Fang, Jing Huang, Jinying Ma. Stabilization of a discretetime system via nonlinear impulsive control. Discrete & Continuous Dynamical Systems  S, 2018, 0 (0) : 00. doi: 10.3934/dcdss.2020106 
Impact Factor:
Tools
Metrics
Other articles
by authors
[Back to Top]