2015, 2015(special): 723-732. doi: 10.3934/proc.2015.0723

On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques

1. 

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaja street, Ekaterinburg, 620990, Russian Federation

Received  July 2014 Revised  January 2015 Published  November 2015

Problems of feedback terminal target control for linear discrete-time systems without and with uncertainties are considered. We continue the development of methods of control synthesis using polyhedral (parallelotope-valued) solvability tubes. The cases without uncertainties, with additive parallelotope-bounded uncertainties, and also with interval uncertainties in coefficients of the system are considered. Also the same systems under state constraints are considered. Nonlinear recurrent relations are presented for polyhedral solvability tubes for each of the mentioned cases. Two types of control strategies, which can be calculated on the base of the mentioned tubes, are proposed. Controls of the second type can be calculated by explicit formulas. Results of computer simulations are presented.
Citation: Elena K. Kostousova. On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques. Conference Publications, 2015, 2015 (special) : 723-732. doi: 10.3934/proc.2015.0723
References:
[1]

Dokl. Akad. Nauk, 434, no. 3 (2010), 319-323 [Russian], Transl. as Dokl. Math., 82 (2010), 831-834.  Google Scholar

[2]

in Modeling Techniques for Uncertain Systems (Sopron, 1992), (eds. A. B. Kurzhanski and V. M. Veliov), Progr. Systems Control Theory, vol. 18, Birkhäser, Boston (1994), 71-92.  Google Scholar

[3]

Nauka, Moscow, 1987 [Russian].  Google Scholar

[4]

IEEE Trans. Automat. Control., AC-24 (1979), 346-349.  Google Scholar

[5]

CRC Press, Boca Raton, 1994. Google Scholar

[6]

Zh. Vychisl. Mat. Mat. Fiz., 53, no.1 (2013), 47-57 [Russian], Transl. as Comput. Math. Math. Phys., 53, no.1 (2013), 34-43.  Google Scholar

[7]

Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications, 8th AIMS Conference, Suppl. vol. I (2011), 410-419.  Google Scholar

[8]

Avtomat. i Telemekh., no. 3 (2012), 39-51 [Russian], Transl. as Autom. Remote Control, 73 (2012), 450-461.  Google Scholar

[9]

Optim. Methods Softw., 14 (2001), 267-310.  Google Scholar

[10]

Computational Technologies, 8 (2003), 55-74 [Russian; also available from: http://www.ict.nsc.ru/jct/search/article?l=eng]. Google Scholar

[11]

Algorithms and Software for Parallel Computations, Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, vol.9, (2006), 84-105 [Russian].  Google Scholar

[12]

Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications, 8th AIMS Conference, Suppl. vol. II (2011), 864-873.  Google Scholar

[13]

AIP Conf. Proc., 1493 (2012), 579-586; doi: http://dx.doi.org/10.1063/1.4765545. Google Scholar

[14]

Nauka, Moscow, 1974 [Russian].  Google Scholar

[15]

Problemy Upravlen. Inform., no.1 (2010), 5-21 [Russian], Transl. as J. Automation and Inform. Sci., 42 (2010), 1-18.  Google Scholar

[16]

Mat. Sb. 191, no. 6 (2000), 69-100 [Russian], Transl. as Sb. Math., 191 (2000), 849-881.  Google Scholar

[17]

Dokl. Akad. Nauk SSSR, 311, no. 4 (1990), 788-793 [Russian], Transl. as Soviet Math. Doklady, 41 (1990), 300-305.  Google Scholar

[18]

Birkhäuser, Boston, 1997.  Google Scholar

[19]

Birkhäuser Basel, 2014.  Google Scholar

[20]

SIAM Journal of Optimization, 9 (1998), 112-147.  Google Scholar

[21]

Nauka, Moscow, 2002 [Russian]. Google Scholar

[22]

Cambridge Univ. Press, Cambridge, 1993.  Google Scholar

[23]

Izv. Ross. Akad. Nauk Tekhn. Kibernet., no. 3 (1994) 173-185 [Russian], Transl. as J. Comput. Systems Sci. Internat., 33, no.6 (1995), 127-139.  Google Scholar

[24]

Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, 2005 [Russian].  Google Scholar

[25]

Izv. Akad. Nauk Teor. Sist. Upr., no.3 (2000), 70-77 [Russian].  Google Scholar

[26]

Systems Control Lett., 13, no.3 (1989), 263-269.  Google Scholar

show all references

References:
[1]

Dokl. Akad. Nauk, 434, no. 3 (2010), 319-323 [Russian], Transl. as Dokl. Math., 82 (2010), 831-834.  Google Scholar

[2]

in Modeling Techniques for Uncertain Systems (Sopron, 1992), (eds. A. B. Kurzhanski and V. M. Veliov), Progr. Systems Control Theory, vol. 18, Birkhäser, Boston (1994), 71-92.  Google Scholar

[3]

Nauka, Moscow, 1987 [Russian].  Google Scholar

[4]

IEEE Trans. Automat. Control., AC-24 (1979), 346-349.  Google Scholar

[5]

CRC Press, Boca Raton, 1994. Google Scholar

[6]

Zh. Vychisl. Mat. Mat. Fiz., 53, no.1 (2013), 47-57 [Russian], Transl. as Comput. Math. Math. Phys., 53, no.1 (2013), 34-43.  Google Scholar

[7]

Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications, 8th AIMS Conference, Suppl. vol. I (2011), 410-419.  Google Scholar

[8]

Avtomat. i Telemekh., no. 3 (2012), 39-51 [Russian], Transl. as Autom. Remote Control, 73 (2012), 450-461.  Google Scholar

[9]

Optim. Methods Softw., 14 (2001), 267-310.  Google Scholar

[10]

Computational Technologies, 8 (2003), 55-74 [Russian; also available from: http://www.ict.nsc.ru/jct/search/article?l=eng]. Google Scholar

[11]

Algorithms and Software for Parallel Computations, Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, vol.9, (2006), 84-105 [Russian].  Google Scholar

[12]

Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications, 8th AIMS Conference, Suppl. vol. II (2011), 864-873.  Google Scholar

[13]

AIP Conf. Proc., 1493 (2012), 579-586; doi: http://dx.doi.org/10.1063/1.4765545. Google Scholar

[14]

Nauka, Moscow, 1974 [Russian].  Google Scholar

[15]

Problemy Upravlen. Inform., no.1 (2010), 5-21 [Russian], Transl. as J. Automation and Inform. Sci., 42 (2010), 1-18.  Google Scholar

[16]

Mat. Sb. 191, no. 6 (2000), 69-100 [Russian], Transl. as Sb. Math., 191 (2000), 849-881.  Google Scholar

[17]

Dokl. Akad. Nauk SSSR, 311, no. 4 (1990), 788-793 [Russian], Transl. as Soviet Math. Doklady, 41 (1990), 300-305.  Google Scholar

[18]

Birkhäuser, Boston, 1997.  Google Scholar

[19]

Birkhäuser Basel, 2014.  Google Scholar

[20]

SIAM Journal of Optimization, 9 (1998), 112-147.  Google Scholar

[21]

Nauka, Moscow, 2002 [Russian]. Google Scholar

[22]

Cambridge Univ. Press, Cambridge, 1993.  Google Scholar

[23]

Izv. Ross. Akad. Nauk Tekhn. Kibernet., no. 3 (1994) 173-185 [Russian], Transl. as J. Comput. Systems Sci. Internat., 33, no.6 (1995), 127-139.  Google Scholar

[24]

Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, 2005 [Russian].  Google Scholar

[25]

Izv. Akad. Nauk Teor. Sist. Upr., no.3 (2000), 70-77 [Russian].  Google Scholar

[26]

Systems Control Lett., 13, no.3 (1989), 263-269.  Google Scholar

[1]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021015

[2]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021  doi: 10.3934/jcd.2021007

[3]

Horst R. Thieme. Discrete-time dynamics of structured populations via Feller kernels. Discrete & Continuous Dynamical Systems - B, 2021  doi: 10.3934/dcdsb.2021082

[4]

Elimhan N. Mahmudov. Second order discrete time-varying and time-invariant linear continuous systems and Kalman type conditions. Numerical Algebra, Control & Optimization, 2021  doi: 10.3934/naco.2021010

[5]

Masashi Wakaiki, Hideki Sano. Stability analysis of infinite-dimensional event-triggered and self-triggered control systems with Lipschitz perturbations. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021021

[6]

Rabiaa Ouahabi, Nasr-Eddine Hamri. Design of new scheme adaptive generalized hybrid projective synchronization for two different chaotic systems with uncertain parameters. Discrete & Continuous Dynamical Systems - B, 2021, 26 (5) : 2361-2370. doi: 10.3934/dcdsb.2020182

[7]

Paula A. González-Parra, Sunmi Lee, Leticia Velázquez, Carlos Castillo-Chavez. A note on the use of optimal control on a discrete time model of influenza dynamics. Mathematical Biosciences & Engineering, 2011, 8 (1) : 183-197. doi: 10.3934/mbe.2011.8.183

[8]

Alberto Bressan, Ke Han, Franco Rampazzo. On the control of non holonomic systems by active constraints. Discrete & Continuous Dynamical Systems, 2013, 33 (8) : 3329-3353. doi: 10.3934/dcds.2013.33.3329

[9]

Yuri Fedorov, Božidar Jovanović. Continuous and discrete Neumann systems on Stiefel varieties as matrix generalizations of the Jacobi–Mumford systems. Discrete & Continuous Dynamical Systems, 2021, 41 (6) : 2559-2599. doi: 10.3934/dcds.2020375

[10]

Adrian Viorel, Cristian D. Alecsa, Titus O. Pinţa. Asymptotic analysis of a structure-preserving integrator for damped Hamiltonian systems. Discrete & Continuous Dynamical Systems, 2021, 41 (7) : 3319-3341. doi: 10.3934/dcds.2020407

[11]

Jamal Mrazgua, El Houssaine Tissir, Mohamed Ouahi. Frequency domain $ H_{\infty} $ control design for active suspension systems. Discrete & Continuous Dynamical Systems - S, 2021  doi: 10.3934/dcdss.2021036

[12]

Vandana Sharma. Global existence and uniform estimates of solutions to reaction diffusion systems with mass transport type boundary conditions. Communications on Pure & Applied Analysis, 2021, 20 (3) : 955-974. doi: 10.3934/cpaa.2021001

[13]

Marita Holtmannspötter, Arnd Rösch, Boris Vexler. A priori error estimates for the space-time finite element discretization of an optimal control problem governed by a coupled linear PDE-ODE system. Mathematical Control & Related Fields, 2021  doi: 10.3934/mcrf.2021014

[14]

Wei-Jian Bo, Guo Lin, Shigui Ruan. Traveling wave solutions for time periodic reaction-diffusion systems. Discrete & Continuous Dynamical Systems, 2018, 38 (9) : 4329-4351. doi: 10.3934/dcds.2018189

[15]

Tianhu Yu, Jinde Cao, Chuangxia Huang. Finite-time cluster synchronization of coupled dynamical systems with impulsive effects. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3595-3620. doi: 10.3934/dcdsb.2020248

[16]

Emma D'Aniello, Saber Elaydi. The structure of $ \omega $-limit sets of asymptotically non-autonomous discrete dynamical systems. Discrete & Continuous Dynamical Systems - B, 2020, 25 (3) : 903-915. doi: 10.3934/dcdsb.2019195

[17]

John Leventides, Costas Poulios, Georgios Alkis Tsiatsios, Maria Livada, Stavros Tsipras, Konstantinos Lefcaditis, Panagiota Sargenti, Aleka Sargenti. Systems theory and analysis of the implementation of non pharmaceutical policies for the mitigation of the COVID-19 pandemic. Journal of Dynamics & Games, 2021  doi: 10.3934/jdg.2021004

[18]

Peter Benner, Jens Saak, M. Monir Uddin. Balancing based model reduction for structured index-2 unstable descriptor systems with application to flow control. Numerical Algebra, Control & Optimization, 2016, 6 (1) : 1-20. doi: 10.3934/naco.2016.6.1

[19]

Xiongxiong Bao, Wan-Tong Li. Existence and stability of generalized transition waves for time-dependent reaction-diffusion systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (7) : 3621-3641. doi: 10.3934/dcdsb.2020249

[20]

Wenmin Gong, Guangcun Lu. On coupled Dirac systems. Discrete & Continuous Dynamical Systems, 2017, 37 (8) : 4329-4346. doi: 10.3934/dcds.2017185

 Impact Factor: 

Metrics

  • PDF downloads (58)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]