2015, 2015(special): 723-732. doi: 10.3934/proc.2015.0723

On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques

1. 

N.N. Krasovskii Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences, 16, S.Kovalevskaja street, Ekaterinburg, 620990, Russian Federation

Received  July 2014 Revised  January 2015 Published  November 2015

Problems of feedback terminal target control for linear discrete-time systems without and with uncertainties are considered. We continue the development of methods of control synthesis using polyhedral (parallelotope-valued) solvability tubes. The cases without uncertainties, with additive parallelotope-bounded uncertainties, and also with interval uncertainties in coefficients of the system are considered. Also the same systems under state constraints are considered. Nonlinear recurrent relations are presented for polyhedral solvability tubes for each of the mentioned cases. Two types of control strategies, which can be calculated on the base of the mentioned tubes, are proposed. Controls of the second type can be calculated by explicit formulas. Results of computer simulations are presented.
Citation: Elena K. Kostousova. On control synthesis for uncertain dynamical discrete-time systems through polyhedral techniques. Conference Publications, 2015, 2015 (special) : 723-732. doi: 10.3934/proc.2015.0723
References:
[1]

I. M. Anan'evskii, N. V. Anokhin and A. I. Ovseevich, Synthesis of a bounded control for linear dynamical systems using the general Lyapunov function, Dokl. Akad. Nauk, 434, no. 3 (2010), 319-323 [Russian], Transl. as Dokl. Math., 82 (2010), 831-834.  Google Scholar

[2]

R. Baier and F. Lempio, Computing Aumann's integral, in Modeling Techniques for Uncertain Systems (Sopron, 1992), (eds. A. B. Kurzhanski and V. M. Veliov), Progr. Systems Control Theory, vol. 18, Birkhäser, Boston (1994), 71-92.  Google Scholar

[3]

N. S. Bakhvalov, N. P. Zhidkov and G. M. Kobel'kov, Numerical Methods, Nauka, Moscow, 1987 [Russian].  Google Scholar

[4]

B. R. Barmish and J. Sankaran, The propagation of parametric uncertainty via polytopes, IEEE Trans. Automat. Control., AC-24 (1979), 346-349.  Google Scholar

[5]

F. L. Chernousko, State Estimation for Dynamic Systems, CRC Press, Boca Raton, 1994. Google Scholar

[6]

A. N. Daryin and A. B. Kurzhanski, Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty, Zh. Vychisl. Mat. Mat. Fiz., 53, no.1 (2013), 47-57 [Russian], Transl. as Comput. Math. Math. Phys., 53, no.1 (2013), 34-43.  Google Scholar

[7]

T. Filippova, Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty, Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications, 8th AIMS Conference, Suppl. vol. I (2011), 410-419.  Google Scholar

[8]

M. I. Gusev, External estimates of the reachability sets of nonlinear controlled systems, Avtomat. i Telemekh., no. 3 (2012), 39-51 [Russian], Transl. as Autom. Remote Control, 73 (2012), 450-461.  Google Scholar

[9]

E. K. Kostousova, Control synthesis via parallelotopes: optimization and parallel computations, Optim. Methods Softw., 14 (2001), 267-310.  Google Scholar

[10]

E. K. Kostousova, Polyhedral estimates for attainability sets of linear multistage systems with integral constraints on the control, Computational Technologies, 8 (2003), 55-74 [Russian; also available from: http://www.ict.nsc.ru/jct/search/article?l=eng]. Google Scholar

[11]

E. K. Kostousova, On polyhedral estimates in problems of the synthesis of control strategies in linear multistep systems, Algorithms and Software for Parallel Computations, Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, vol.9, (2006), 84-105 [Russian].  Google Scholar

[12]

E. K. Kostousova, On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty, Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications, 8th AIMS Conference, Suppl. vol. II (2011), 864-873.  Google Scholar

[13]

E. K. Kostousova, On tight polyhedral estimates for reachable sets of linear differential systems, AIP Conf. Proc., 1493 (2012), 579-586; doi: http://dx.doi.org/10.1063/1.4765545. Google Scholar

[14]

N. N. Krasovskii and A. I. Subbotin, Positional Differential Games, Nauka, Moscow, 1974 [Russian].  Google Scholar

[15]

V. M. Kuntsevich and A. B. Kurzhanski, Attainability domains for linear and some classes of nonlinear discrete systems and their control, Problemy Upravlen. Inform., no.1 (2010), 5-21 [Russian], Transl. as J. Automation and Inform. Sci., 42 (2010), 1-18.  Google Scholar

[16]

A. B. Kurzhanskii and N. B. Mel'nikov, On the problem of the synthesis of controls: the Pontryagin alternative integral and the Hamilton-Jacobi equation, Mat. Sb. 191, no. 6 (2000), 69-100 [Russian], Transl. as Sb. Math., 191 (2000), 849-881.  Google Scholar

[17]

A. B. Kurzhanski and O. I. Nikonov, On the problem of synthesizing control strategies. Evolution equations and set-valued integration, Dokl. Akad. Nauk SSSR, 311, no. 4 (1990), 788-793 [Russian], Transl. as Soviet Math. Doklady, 41 (1990), 300-305.  Google Scholar

[18]

A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997.  Google Scholar

[19]

A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes. Theory and Computation (Systems & Control: Foundations & Applications, Book 85), Birkhäuser Basel, 2014.  Google Scholar

[20]

J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM Journal of Optimization, 9 (1998), 112-147.  Google Scholar

[21]

B. T. Polyak and P. S. Scherbakov, Robust Stability and Control, Nauka, Moscow, 2002 [Russian]. Google Scholar

[22]

R. G. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Cambridge, 1993.  Google Scholar

[23]

A. M. Taras'yev, A. A. Uspenskiy and V. N. Ushakov, Approximation schemas and finite-difference operators for constructing generalized solutions of Hamilton-Jacobi equations, Izv. Ross. Akad. Nauk Tekhn. Kibernet., no. 3 (1994) 173-185 [Russian], Transl. as J. Comput. Systems Sci. Internat., 33, no.6 (1995), 127-139.  Google Scholar

[24]

V. V. Vasin and I. I. Eremin, Operators and Iterative Processes of Fejér Type. Theory and Applications, Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, 2005 [Russian].  Google Scholar

[25]

A. Yu. Vazhentsev, Internal ellipsoidal approximations for problems of the synthesis of a control with bounded coordinates, Izv. Akad. Nauk Teor. Sist. Upr., no.3 (2000), 70-77 [Russian].  Google Scholar

[26]

V. M. Veliov, Second order discrete approximations to strongly convex differential inclusions, Systems Control Lett., 13, no.3 (1989), 263-269.  Google Scholar

show all references

References:
[1]

I. M. Anan'evskii, N. V. Anokhin and A. I. Ovseevich, Synthesis of a bounded control for linear dynamical systems using the general Lyapunov function, Dokl. Akad. Nauk, 434, no. 3 (2010), 319-323 [Russian], Transl. as Dokl. Math., 82 (2010), 831-834.  Google Scholar

[2]

R. Baier and F. Lempio, Computing Aumann's integral, in Modeling Techniques for Uncertain Systems (Sopron, 1992), (eds. A. B. Kurzhanski and V. M. Veliov), Progr. Systems Control Theory, vol. 18, Birkhäser, Boston (1994), 71-92.  Google Scholar

[3]

N. S. Bakhvalov, N. P. Zhidkov and G. M. Kobel'kov, Numerical Methods, Nauka, Moscow, 1987 [Russian].  Google Scholar

[4]

B. R. Barmish and J. Sankaran, The propagation of parametric uncertainty via polytopes, IEEE Trans. Automat. Control., AC-24 (1979), 346-349.  Google Scholar

[5]

F. L. Chernousko, State Estimation for Dynamic Systems, CRC Press, Boca Raton, 1994. Google Scholar

[6]

A. N. Daryin and A. B. Kurzhanski, Parallel algorithm for calculating the invariant sets of high-dimensional linear systems under uncertainty, Zh. Vychisl. Mat. Mat. Fiz., 53, no.1 (2013), 47-57 [Russian], Transl. as Comput. Math. Math. Phys., 53, no.1 (2013), 34-43.  Google Scholar

[7]

T. Filippova, Differential equations of ellipsoidal state estimates in nonlinear control problems under uncertainty, Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications, 8th AIMS Conference, Suppl. vol. I (2011), 410-419.  Google Scholar

[8]

M. I. Gusev, External estimates of the reachability sets of nonlinear controlled systems, Avtomat. i Telemekh., no. 3 (2012), 39-51 [Russian], Transl. as Autom. Remote Control, 73 (2012), 450-461.  Google Scholar

[9]

E. K. Kostousova, Control synthesis via parallelotopes: optimization and parallel computations, Optim. Methods Softw., 14 (2001), 267-310.  Google Scholar

[10]

E. K. Kostousova, Polyhedral estimates for attainability sets of linear multistage systems with integral constraints on the control, Computational Technologies, 8 (2003), 55-74 [Russian; also available from: http://www.ict.nsc.ru/jct/search/article?l=eng]. Google Scholar

[11]

E. K. Kostousova, On polyhedral estimates in problems of the synthesis of control strategies in linear multistep systems, Algorithms and Software for Parallel Computations, Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, vol.9, (2006), 84-105 [Russian].  Google Scholar

[12]

E. K. Kostousova, On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty, Discrete Contin. Dyn. Syst. 2011, Dynamical systems, differential equations and applications, 8th AIMS Conference, Suppl. vol. II (2011), 864-873.  Google Scholar

[13]

E. K. Kostousova, On tight polyhedral estimates for reachable sets of linear differential systems, AIP Conf. Proc., 1493 (2012), 579-586; doi: http://dx.doi.org/10.1063/1.4765545. Google Scholar

[14]

N. N. Krasovskii and A. I. Subbotin, Positional Differential Games, Nauka, Moscow, 1974 [Russian].  Google Scholar

[15]

V. M. Kuntsevich and A. B. Kurzhanski, Attainability domains for linear and some classes of nonlinear discrete systems and their control, Problemy Upravlen. Inform., no.1 (2010), 5-21 [Russian], Transl. as J. Automation and Inform. Sci., 42 (2010), 1-18.  Google Scholar

[16]

A. B. Kurzhanskii and N. B. Mel'nikov, On the problem of the synthesis of controls: the Pontryagin alternative integral and the Hamilton-Jacobi equation, Mat. Sb. 191, no. 6 (2000), 69-100 [Russian], Transl. as Sb. Math., 191 (2000), 849-881.  Google Scholar

[17]

A. B. Kurzhanski and O. I. Nikonov, On the problem of synthesizing control strategies. Evolution equations and set-valued integration, Dokl. Akad. Nauk SSSR, 311, no. 4 (1990), 788-793 [Russian], Transl. as Soviet Math. Doklady, 41 (1990), 300-305.  Google Scholar

[18]

A. B. Kurzhanski and I. Vályi, Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, 1997.  Google Scholar

[19]

A. B. Kurzhanski and P. Varaiya, Dynamics and Control of Trajectory Tubes. Theory and Computation (Systems & Control: Foundations & Applications, Book 85), Birkhäuser Basel, 2014.  Google Scholar

[20]

J. C. Lagarias, J. A. Reeds, M. H. Wright and P. E. Wright, Convergence properties of the Nelder-Mead simplex method in low dimensions, SIAM Journal of Optimization, 9 (1998), 112-147.  Google Scholar

[21]

B. T. Polyak and P. S. Scherbakov, Robust Stability and Control, Nauka, Moscow, 2002 [Russian]. Google Scholar

[22]

R. G. Schneider, Convex Bodies: The Brunn-Minkowski Theory, Cambridge Univ. Press, Cambridge, 1993.  Google Scholar

[23]

A. M. Taras'yev, A. A. Uspenskiy and V. N. Ushakov, Approximation schemas and finite-difference operators for constructing generalized solutions of Hamilton-Jacobi equations, Izv. Ross. Akad. Nauk Tekhn. Kibernet., no. 3 (1994) 173-185 [Russian], Transl. as J. Comput. Systems Sci. Internat., 33, no.6 (1995), 127-139.  Google Scholar

[24]

V. V. Vasin and I. I. Eremin, Operators and Iterative Processes of Fejér Type. Theory and Applications, Ross. Akad. Nauk Ural. Otdel., Inst. Mat. Mekh., Ekaterinburg, 2005 [Russian].  Google Scholar

[25]

A. Yu. Vazhentsev, Internal ellipsoidal approximations for problems of the synthesis of a control with bounded coordinates, Izv. Akad. Nauk Teor. Sist. Upr., no.3 (2000), 70-77 [Russian].  Google Scholar

[26]

V. M. Veliov, Second order discrete approximations to strongly convex differential inclusions, Systems Control Lett., 13, no.3 (1989), 263-269.  Google Scholar

[1]

Elena K. Kostousova. On polyhedral control synthesis for dynamical discrete-time systems under uncertainties and state constraints. Discrete & Continuous Dynamical Systems, 2018, 38 (12) : 6149-6162. doi: 10.3934/dcds.2018153

[2]

Elena K. Kostousova. On polyhedral estimates for trajectory tubes of dynamical discrete-time systems with multiplicative uncertainty. Conference Publications, 2011, 2011 (Special) : 864-873. doi: 10.3934/proc.2011.2011.864

[3]

Elena K. Kostousova. External polyhedral estimates of reachable sets of discrete-time systems with integral bounds on additive terms. Mathematical Control & Related Fields, 2021, 11 (3) : 625-641. doi: 10.3934/mcrf.2021015

[4]

Hongyan Yan, Yun Sun, Yuanguo Zhu. A linear-quadratic control problem of uncertain discrete-time switched systems. Journal of Industrial & Management Optimization, 2017, 13 (1) : 267-282. doi: 10.3934/jimo.2016016

[5]

Yuefen Chen, Yuanguo Zhu. Indefinite LQ optimal control with process state inequality constraints for discrete-time uncertain systems. Journal of Industrial & Management Optimization, 2018, 14 (3) : 913-930. doi: 10.3934/jimo.2017082

[6]

Chuandong Li, Fali Ma, Tingwen Huang. 2-D analysis based iterative learning control for linear discrete-time systems with time delay. Journal of Industrial & Management Optimization, 2011, 7 (1) : 175-181. doi: 10.3934/jimo.2011.7.175

[7]

Haijun Sun, Xinquan Zhang. Guaranteed cost control of discrete-time switched saturated systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (8) : 4515-4522. doi: 10.3934/dcdsb.2020300

[8]

Xi Zhu, Meixia Li, Chunfa Li. Consensus in discrete-time multi-agent systems with uncertain topologies and random delays governed by a Markov chain. Discrete & Continuous Dynamical Systems - B, 2020, 25 (12) : 4535-4551. doi: 10.3934/dcdsb.2020111

[9]

Aleksandar Zatezalo, Dušan M. Stipanović. Control of dynamical systems with discrete and uncertain observations. Discrete & Continuous Dynamical Systems, 2015, 35 (9) : 4665-4681. doi: 10.3934/dcds.2015.35.4665

[10]

Ran Dong, Xuerong Mao. Asymptotic stabilization of continuous-time periodic stochastic systems by feedback control based on periodic discrete-time observations. Mathematical Control & Related Fields, 2020, 10 (4) : 715-734. doi: 10.3934/mcrf.2020017

[11]

Huan Su, Pengfei Wang, Xiaohua Ding. Stability analysis for discrete-time coupled systems with multi-diffusion by graph-theoretic approach and its application. Discrete & Continuous Dynamical Systems - B, 2016, 21 (1) : 253-269. doi: 10.3934/dcdsb.2016.21.253

[12]

Tadeusz Kaczorek, Andrzej Ruszewski. Analysis of the fractional descriptor discrete-time linear systems by the use of the shuffle algorithm. Journal of Computational Dynamics, 2021, 8 (2) : 153-163. doi: 10.3934/jcd.2021007

[13]

Byungik Kahng, Miguel Mendes. The characterization of maximal invariant sets of non-linear discrete-time control dynamical systems. Conference Publications, 2013, 2013 (special) : 393-406. doi: 10.3934/proc.2013.2013.393

[14]

Yadong Shu, Bo Li. Linear-quadratic optimal control for discrete-time stochastic descriptor systems. Journal of Industrial & Management Optimization, 2021  doi: 10.3934/jimo.2021034

[15]

Victor Kozyakin. Minimax joint spectral radius and stabilizability of discrete-time linear switching control systems. Discrete & Continuous Dynamical Systems - B, 2019, 24 (8) : 3537-3556. doi: 10.3934/dcdsb.2018277

[16]

Yueyuan Zhang, Yanyan Yin, Fei Liu. Robust observer-based control for discrete-time semi-Markov jump systems with actuator saturation. Journal of Industrial & Management Optimization, 2021, 17 (6) : 3013-3026. doi: 10.3934/jimo.2020105

[17]

Qiying Hu, Chen Xu, Wuyi Yue. A unified model for state feedback of discrete event systems II: Control synthesis problems. Journal of Industrial & Management Optimization, 2008, 4 (4) : 713-726. doi: 10.3934/jimo.2008.4.713

[18]

Peter Giesl, Zachary Langhorne, Carlos Argáez, Sigurdur Hafstein. Computing complete Lyapunov functions for discrete-time dynamical systems. Discrete & Continuous Dynamical Systems - B, 2021, 26 (1) : 299-336. doi: 10.3934/dcdsb.2020331

[19]

Vladimir Răsvan. On the central stability zone for linear discrete-time Hamiltonian systems. Conference Publications, 2003, 2003 (Special) : 734-741. doi: 10.3934/proc.2003.2003.734

[20]

Sofian De Clercq, Koen De Turck, Bart Steyaert, Herwig Bruneel. Frame-bound priority scheduling in discrete-time queueing systems. Journal of Industrial & Management Optimization, 2011, 7 (3) : 767-788. doi: 10.3934/jimo.2011.7.767

 Impact Factor: 

Metrics

  • PDF downloads (70)
  • HTML views (0)
  • Cited by (0)

Other articles
by authors

[Back to Top]